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Abstract—Internet of Things (IoT) apps provide great conve-
nience but exposes us to new safety threats. Unlike traditional
software systems, threats may emerge from the joint behavior
of multiple apps. While prior studies use handcrafted safety
and security policies to detect these threats, these policies may
not anticipate all usages of the devices and apps in a smart
home, causing false alarms. In this study, we propose to use the
technique of mining sandboxes for securing an IoT environment.
After a set of behaviors are analyzed from a bundle of apps and
devices, a sandbox is deployed, which enforces that previously
unseen behaviors are disallowed. Hence, the execution of mali-
cious behavior, introduced from software updates or obscured
through methods to hinder program analysis, is blocked.

While sandbox mining techniques have been proposed for
Android apps, we show and discuss why they are insufficient for
detecting malicious behavior in a more complex IoT system. We
prototype IoTBox to address these limitations. IoTBox explores
behavior through a formal model of a smart home. In our
empirical evaluation to detect malicious code changes, we find
that IoTBox achieves substantially higher precision and recall
compared to existing techniques for mining sandboxes.

I. INTRODUCTION

Internet of Things (IoT) systems, such as smart homes,
are becoming popular and widespread. There are security
risks at each level of granularity in an IoT environment. At
the application-level, researchers have studied the security
implications of IoT platforms that allow users to install apps
that allow devices to interact with one another. A smart home
comprises a collection of devices and apps. These apps control
and connect different devices together, bringing many benefits
and convenience to users, but this comes at the price of
security risks. The increased attack surface has led to new
types of attacks, such as those that introduce physical risks. For
example, an app can be used to configure a smart home such
that the windows will be opened if a temperature sensor in a
room measures a reading above a user-specified temperature.
A malicious app can spoof fake temperature readings to trigger
the opening of the window, potentially allowing a break-
in [1]. Other apps can open a door when no one is at home,
disable a smoke detector, and induce seizures through the rapid
strobing of lights [2]. Hence, it is important to understand the
security risks of apps used in a smart home and defend against
malicious behaviors.

One source of complexity is that apps can interact with one
another through the devices they control and are triggered by.

Malicious behavior can arise through the interaction of multi-
ple apps, which may interact to produce unintended results in
the physical environment. This motivates the need to study a
smart home as a system of interacting apps and devices, rather
than asserting that the behaviors of the individual apps in the
smart home are safe.

Existing work has focused on using model checking or
monitoring smart homes to ensure that joint behaviors of
the apps do not violate safety properties [3]–[7]. Some of
these techniques extract models of the apps through static
analysis [3], [4], [6], checking them against predefined safety
properties that were written by hand. For example, techniques
may enforce a property that the door is never unlocked while
the occupants of a smart home are away, and another property
may be that the lights in the house are never automatically
switched off while the occupants are home.

A problem is that these properties may not anticipate all
legitimate uses of the apps. Indeed, the normal executions
of some apps deliberately violate these safety properties and
users may install these apps knowingly. A security policy
that prohibits any switches from turning on when the users
are not home will prevent the use of the legitimate app,
VacationLightingDirector [8], which simulates occupancy in
a house by occasionally switching on the lights when the
user is on vacation. These techniques cannot distinguish
between user-intended violations of the properties from real
safety problems. Moreover, as new devices and new apps
are developed and introduced into the market, there will be
new forms of incorrect behavior involving new apps and
devices. Existing techniques cannot defend against new modes
of attacks involving new channels or devices, for which safety
properties have not been written yet. This motivates the need
to automatically identify relevant security policies.

In this work, we propose that we can begin addressing the
above-mentioned limitations through the technique of sandbox
mining [9], inspired by the work by Jamrozik et al. mining
sandboxes for Android apps [9]. We propose IoTBox, which
automatically mines a sandbox for a smart home. Rather
than writing out safety properties by hand, IoTBox encodes
the current behaviors of a smart home and protects the user
against unexpected behaviors. The possible behaviors of a
smart home are encapsulated in the sandbox, which detects
changes in behavior. Changes in behaviors may be caused by



the introduction of malicious behavior in an app, unexpected
bugs due to a new interaction between apps, or the removal
of behavior that the user depended on. After the sandbox is
mined, it excludes behavior that was not previously captured
during analysis. If an app is replaced or updated with malicious
code, the sandbox prohibits any behavior that violates its rules
and reports it. The user of the apps can investigate and decide
if the new behavior should be permitted. If a change is benign
and acceptable to the user, the sandbox can be relearned on
the updated smart home again and will defend the smart home
system against new threats.

However, unlike mining sandboxes for Android [9]–[11],
the possible behaviors in a smart home cannot be as easily
explored using test case generation. Unlike traditional software
systems, actions invoked within the smart home may take
several seconds before they execute. The state space, com-
posed of every app located in the smart home, is enormous
compared to individual Android apps. Yet, it is essential to
comprehensively explore the possible behaviors of the smart
home to learn accurate rules.

Another challenge is that malicious behavior may disable
an action instead of invoking new actions. For example, an
adversary may disable existing behavior that locks a door
when the user is asleep, leaving it unlocked for an adversary.
Consequently, a sandbox for IoT should detect changes in
behavior that causes missing actions.

In this study, we overcome the above challenges by lever-
aging the precision of the formal models proposed in existing
studies [6]. Specifically, IoTBox uses a formal model of a
smart home [6] to identify a complete execution context for
any automated action with the help of a model checker.
During monitoring of the environment, IoTBox then uses these
execution contexts to identify actions that it expects the smart
home to automatically run. If there is a mismatch between the
expected actions and actions in reality, then IoTBox detects
that there is a behavioral change and alarms the user.

In this work, we present three contributions:

• We present the need for inferring security policies person-
alized to individual smart homes. We show that existing
techniques using handcrafted policies may lead to false
positives on usage contexts that are likely to be legitimate.

• To address this problem, we propose that techniques to
mine sandboxes can be used for monitoring IoT environ-
ments. We develop IoTBox, which mines a sandbox by
exploring behavior with the help of a model checker.

• We empirically evaluate IoTBox, comparing it to tech-
niques for mining sandboxes of Android apps. We discuss
IoTBox’s mitigation to the problem of false negatives.

II. BACKGROUND

In this section, we present relevant background. IoTBox
builds on top of both prior studies formalizing an IoT sys-
tem [6], and techniques to mine sandboxes [9], [10], [12].

Motion
detected HOME Mode

Switch on

Unlock Door

AppTouch

Fig. 1. This smart home transits to HOME mode on detecting motion (App1)
or if a light is switched on (App2). The door is unlocked when the mode has
changed or through a user interaction with the SmartThings app (App 3).

A. Smart Home Platforms

We focus on the apps in the Samsung SmartThings [13]
and IFTTT [14] platforms. In a typical smart home platform,
physical devices have a corresponding virtual representation
on the platform. The state of each device is a mapping of
attributes to values. The state of a device can be modified
through actions, such as switching on the lights (toggling
switch.off to switch.on). The set of attributes and actions of a
device is determined upon registration of the physical device
to the smart home platform, where it is granted a capability
(e.g. a lock, a switch, or a thermostat).

Once registered, apps can access these devices by specifying
the required capability. Within the apps written in Groovy,
each device can then be accessed as an object. Device at-
tributes are read through the attributes on the object, and
the actions on the device (e.g. door.unlock(), alarm.off()) are
invoked through method calls. Installed apps can interact with
one another through various means. For example, an app can
change the mode of the smart home to Home, indicating that
the user is home, and a second app unlocks the door when it
detects that there is a mode change.

Arbitrary apps can be installed by the user on the smart
home platform. Each app has a set of capabilities it requires,
in which the user binds existing devices to. Apps are written
following an event-handling paradigm. Usually, apps wait for
events from sensor devices and trigger new actions through
actuator devices. Apps can interact through devices (e.g. one
app toggles a switch at a particular time of the day, and another
app is triggered by the switch to turn on all the lamps in the
house) or through physical channels (e.g. one app triggers a
lamp in a room, which causes another app to pick up sensor
readings from an illuminance sensor).

We show an example of app interactions spanning multiple
apps in Figure 1. A first app switches the smart home to
HOME mode after a motion sensor detects motion, a second
app switches the smart home to HOME mode if a light is
switched on, and a third app unlocks the door if it detects
a transition to HOME mode or if the user unlocks the door
through the SmartThings apps. This transitively creates a link
between a motion sensor event and unlocking the door.

B. Formal model of a smart home

In this study, we use the formal model of a smart home
proposed by Alhanahnah et al. [6]. They provide a tool,



IoTCOM [6], to analyse apps written for the SmartThings and
IFTTT platforms. IoTCOM provides a parser that translates
these apps to Alloy [15] models. A smart home consists of
a set of devices and apps. Each device has one or more
capabilities, attributes, and at any time, a value associated with
each attribute. Smart apps can connect these devices, such as
invoking an actuator (e.g. unlocking a door) given a reading
from a sensor (e.g. a motion detector sensing motion). A smart
app is a collection of rules. Rules are tuples of a Trigger ×
a set of Conditions × a set of Commands.

Triggers represent the conditions in which the app is
activated. These are often events from the smart home sen-
sors, such as a door opening. A trigger comprises a device
capability, an attribute associated with the capability, and the
value of the attribute. Each rule has at most one trigger.

Conditions represent the logical predicates on the state
of other devices/smart home. These predicates guard the
invocation of a rule’s commands. For example, after a rule
is triggered by an event (“smoke detected”), a rule may have
other conditions (“the door is locked”), before it executes a
command (“unlock the door”). A trigger comprises a capabil-
ity, an attribute associated with the capability, and the value of
the attribute. Each rule may have any number of conditions.

Commands represent the actions taken by a rule, including
device actuations that change the physical state of the smart
home. Each command comprises a device capability, an at-
tribute, and a value. A rule may have one or more commands.

The SmartThings platform also allows for state variables
that persist over different executions of an app. Each state
variable is encoded as a device capability in IoTCOM, allow-
ing for analysis of behaviors that depend on these variables.

Another consideration is communication between devices
and apps through physical channels. IoTCOM [6] includes the
physical channels in its model of the smart home and models
them as a mapping of capabilities to a physical channel. Each
channel can link together an actuator device (e.g. a valve) and
a sensor device (e.g. a water sensor).

IoTCOM [6] precisely represents the smart home in Alloy
and uses the Alloy Analyser to assert that safety properties
hold on the smart home. First, IoTCOM converts the apps in
the smart home to Alloy models. Their joint behaviors are
represented as a behavioral rule graph, which captures the
behaviors of apps, linking together the triggers, conditions,
and commands of relevant rules. IoTCOM then asserts that the
apps do not violate any safety property. In our work, IoTBox
can be built on top of any formal model, however, as prior
studies faced scalability issues [3], [4], [16], we use IoTCOM’s
precise model of a smart home.

C. Mining sandboxes

Traditionally, malicious programs have been executed in
sandboxes, which blocks access to resources that have security
concerns. Researchers [9], [11] have suggested that entirely
blocking/allowing access to a certain resource may be too
coarsed-grained, and have proposed to identify more granular
conditions of accessing each resource, restricting access if the

conditions are unmet. To do so, techniques have been proposed
to automate the mining of rules for a sandbox. Jamrozik et
al. [9] suggest mining associations between GUI elements and
sensitive API access through the generation of Android GUI
tests. This allows the identification of rules permitting access
to sensitive resources, such as the camera, only if the user is
performing specific actions on the app.

There are two phases to mining sandboxes, the exploration
phase and the sandboxing phase. In the first phase, the be-
haviors of an app are explored and encoded into the sandbox.
In the sandboxing phase, new behaviors that were not seen
during the first phase are prohibited. If the app requires a new
behavior, the sandbox should prohibit it or defer the request
for approval by a human user.

For example, if a new version of an app is released, a user
can install and run it in the sandbox. As the sandbox detects
previously unseen behavior (e.g. reading a file), it alerts the
user. Then, the user assesses the situation, and if the user
determines if the new behavior is desirable, its execution is
permitted. Otherwise, the execution of the potentially danger-
ous behavior is stopped.

For these techniques to work effectively, it is necessary
to sufficiently explore the app. If a normal behavior is not
accessed during the exploration, it will produce false alarms
during the sandboxing phase. Existing techniques [9]–[12] rely
on test generation to explore the app. These studies suggest
that test generation can be effective for exploring behaviors in
individual Android applications and Linux containers.

Key to mining sandboxes with test case generation is the
test complement exclusion [17] method. There is no guarantee
that behaviors that have not been observed will not occur in
the future. Test complement exclusion turns this limitation into
a guarantee by using the sandbox to allow only behaviors seen
as the sandbox is mined. Therefore, if no malicious behavior
was observed, then no malicious behavior can execute.

Existing techniques differ in the context considered to
determine if a given resource should be accessible. If the rule
allowing a resource access is too coarse-grained, then it may
fail to detect malicious behaviors, while if it is too granu-
lar, then it may stop benign behaviors with inconsequential
differences from executing. In the work of Wan et al. [12],
only the set of system calls are tracked and their contexts are
ignored. In Jamrozik et al’s work [9], the execution context
is the GUI element that the user interacted with before an
Android API call. In Le et al’s work [10], the execution context
is the sequence of other API calls before the given API call.

III. IOTBOX

Our primary contribution is the proposal of IoTBox, a
technique that mines a sandbox for a smart home. Key to our
approach is to consider only causal information between events
in a smart home. First, IoTBox connects events and actions to
determine all possible paths leading to any action. If there is
some unexplained difference between IoTBox’s expectations
and the actions in the real world, then it suggests that there
is a behavior in the smart home that differs from the rules



that IoTBox has learned. There are two phases to IoTBox,
much like other techniques mining sandboxes [9]–[12], the
exploration phase and the sandboxing phase.

In the exploration phase, IoTBox thoroughly explores the
behaviors of the software system to determine the execution
context of possible actions in the smart home. We consider an
action’s execution context as the set of execution paths causing
the action’s execution. IoTBox refines the execution context
of a given action, finding all possible causes of the action,
by utilizing the Alloy Analyzer to identify all paths linked to
the action, including non-trivial interactions across multiple
apps and timed events. This creates two guarantees. Firstly,
only events that are linked to the given action are identified,
and secondly, all such events are found. In contrast, existing
work on mining sandboxes rely on test case generation, which
may fail to comprehensively explore the entire search space
of behaviors (In Section V, we discuss the tradeoffs of this
choice). Abstracting the identified behaviors as rules, IoTBox
uses these rules in the sandboxing phase to judge if there is any
missing or disallowed action given recently observed events.

A. Exploration phase

To mine a sandbox, we use the Alloy Analyzer, a model
checker, to thoroughly explore the behaviors of a bundle of
apps encoded in the behavioral rule models, introduced by
Alhanahnah et al. [6]. As described before in Section 2, these
models are encoded in Alloy. The exploration phase can be
viewed as answering the question “What are all possible paths
that lead to a given action?”.

After we have produced formal models of all apps in the
smart home, our first step is to identify all actions that the
apps may execute. This is done by traversing all rules and
picking out all actions that may be executed. Our next step is
to find all execution paths to lead to any given action. In the
example in Figure 1, one such path is (“Motion Detected” →
“Home Mode” → “Unlock Door”). This entails finding out
all events, events, that can trigger each action, a. First, we
identify an event, event, that will trigger it (i.e., by simply
using the triggers and conditions of the rules that the action
is a command of). Next, we construct an Alloy assertion that
checks that all events on a path leading to the action is either
event or is preceded by it. The following Linear Temporal
Logic [18] fragment describes that any occurrence of a must
be on an execution path triggered by event:

¬a W event

event has a device capability, an attribute, and a value
associated with the attribute. This is used to initialize events,
which initially contains just event. For example using Figure
1, given a trigger (location, location mode, HOME), which
matches an event on a motion sensor, we initialize the
set, events, with a single event, (location, location mode,
HOME). An example of the assertion in Alloy is shown in
Figure 2. It asserts that for all rules unlocking the door, all

assert {
no r : IoTApp.rules, action : r.commands {

action.attribute = lock
action.value = unlock
(some predecessor : r.*(˜connected),
action’ : predecessor.triggers
{
not {(
{

action’.attribute = location_mode
action’.value = HOME

}) or
(some predecessor’ : predecessor.*(˜connected),
action’’ : predecessor’.triggers
{

predecessor 6= r
action’’.attribute = location_mode
action’’.value = HOME

}
)}

})
}

}

Fig. 2. Example of an Alloy assertion

preceeding events are on the chain of events triggered by the
transition to HOME mode.

We run the Alloy Analyser to check the assertion. If the
assertion fails, the Alloy Analyser will generate a counterex-
ample of an event, different from event, that transitively
triggers the action. This new event, event2 (one of “motion
detected”, “switch on”, or “App Touch” in our example), is
added to events, and we modify the assertion to look for
counterexamples of paths which are triggered by events not
in events. Only event2, a single event that precedes all other
events on the path, is added. Obtaining the possible paths from
event2 is done afterwards. There may be multiple paths that
are triggered by event2 that result in a.

¬a W (event ∨ event2)

Again, we execute the Alloy Analyser to check this
assertion. If it fails, we once again use the counterexample it
finds to modify the assertion. This process continues until the
Alloy Analyser fails to find a counterexample, and that all
chains of events that lead to a have been accounted for. At the
end of this process, this assertion doubles as an interpretable
security policy. The policy declares all possible events that
can lead to a, and checks that other events do not transitively
trigger a. This process produces the following assertion with
n different triggering events:

¬a W (∨n1 eventi)

An advantage of this technique is that it identifies only
events that have a causal relationship with a based on the
behavioral rule graph. Only events that are a root cause of
the execution of a are identified and included in events. This
avoids the problem of spurious associations had we applied
data mining techniques on the large number of events.

Next, we traverse the behavioral rule graph, beginning with
the members of events. We find all paths that lead to a. A



path is a series of events and does not contain loops. From
all paths that start with a member of events, we identify all
subpaths that end with a, and in turn, these subpaths are paths.
This gives us the set of paths, paths.

execution context(a) = paths

We treat paths as the execution context of a. For an
invocation of a, at least one path (e.g.“Motion detected”
→ “Home Mode”) within the execution context must be
satisfied; all conditions and their predicates along the path
must be satisfied, and all triggers in this path must have been
triggered. satisfied(path) is an implementation detail that will
be described in Section III-B.

If an execution context of an action is satisfied, then an actu-
ation of the action is expected. With this assumption, IoTBox
looks for mismatches between the expected and actual actions
in the smart home. Let us define two predicates: expected(a)
is true when the execution context of a has been satisfied.
actual(a) is true when the action a has been observed in the
IoT environment. Based on these two predicates, the following
gives a formal definition of IoTBox’s assumption:

satisfied(execution context(a))↔
∃path(path ∈ execution context(a) ∧ satisfied(path))

expected(a)↔ satisfied(execution context(a))

By the end of this phase, we have constructed for any given
action, a, an execution context that comprises the set of all
paths that lead to the triggering of a. The execution context
allows for both the detection of new causes of an action and
missing actions.

Given an action a that has taken place, IoTBox considers it
as a disallowed action if its execution was not expected.

disallowed(a)↔ ¬expected(a) ∧ actual(a)

Conversely, IoTBox considers an action to be missing if its
execution was expected (e.g. “Unlock Door” is expected after
observing “Motion Detected” and “HOME Mode”) but is not
observed in reality.

missing(a)↔ expected(a) ∧ ¬actual(a)

B. Sandboxing phase

The objective of the sandboxing phase is to detect if there
is a change in the behaviors of the smart home. This is done
through monitoring executions at runtime. While the explo-
ration phase was done through static analysis, it is insufficient
to use static analysis to prevent malicious behaviors; malicious
behaviors can be invoked through dynamic language features,
such as call-by-reflection. Within IoTBox, the sandboxing
phase answers the question: “For all automated actions, are
there changes in the paths that can trigger it?”

If there is an unexpected action, then it implies that there
is a new path that IoTBox is unaware of. If there is a missing
action, then it implies that some paths has been removed.

When deployed, IoTBox communicates with the app before
the execution of each action and whenever an event takes

place. This requires the instrumentation of the smart apps
to send events to IoTBox. We write a Groovy program
transformer that modifies the Groovy smart apps at each event
handler and at call sites of any action. The modified app
calls out to a third-party server to either update IoTBox of
new events or to request for permission to run an action.
When an event handler runs, it logs the event to IoTBox.
Before an action is invoked, the app waits for permission
from IoTBox. Malicious behavior may be invoked through
dynamic program features such as call-by-reflection, and we
add guards to locations using Groovy’s GString feature to
perform dynamic method invocations. The action, resolved at
runtime, waits for permission from IoTBox before execution,
similar to statically invoked actions.

The traces of events and actions previously taken in the
smart home prior to the action are used by IoTBox to make
a decision to allow or reject an action. As events occur in a
smart home, IoTBox updates its model of expected actions
based on the execution contexts of the actions. With every
new event that is reported, IoTBox determines if there is any
missing event. IoTBox warns the user if an action is rejected
or if there is a missing action.

We did not experience significantly increased latencies when
we deployed our tool on the SmartThings Simulator. Our find-
ings (less than 15% overhead) are similar with previous stud-
ies, which found that even after instrumentation, the latency
for an action to execute is largely caused by communication
between the IoT platform’s server and the physical device [5].

IoTBox uses the most recent executed events to make
decisions, much like DSM, the state-of-the-art technique to
mine sandboxes [10]. Using these events, it makes a best-
effort guess if each path in an action’s execution context
is satisfied. IoTBox is conservative about the triggers on the
path, requiring that they must all be present before allowing
an action, but liberal in checking the conditions; an action is
denied only if there is evidence that a condition is not satisfied.
Concretely, we propose the following algorithm to determine
if satisfied(path) holds for a given path .

In Figure 3, we iterate over the sequence of events in the
traces, using tracePointer (initialized in Line 1, incre-
mented in Line 16), and over the triggers on the path (Line 3).
Each trigger has conditions associated with it, coming from the
same rule (Line 4). Between the events that match subsequent
triggers, if an event matches a condition on its device and
attribute, but with a different value, then it causes the valuation
of the condition to be false. If the event matches on the
value, then it causes the valuation to be true. We track the
conditions’ valuation using isConditionNegated (initial-
ized in Line 2), which maps a condition to true if an event
caused the condition to have a negative valuation (set in
either Line 10 or 12). Before the next trigger is matched,
if a condition’s valuation is false, then the path cannot
be satisfied (Lines 18-20). any(isConditionNegated,
conditions) returns true if any condition maps to true.
A path is not satisfied if there is a missing trigger (Line 21)
or if there is evidence that a required condition is false (Line



Input: A sequence of events, trace.
Input: A path, path.
Output: satisfied(path), either true or false.

1: traceP tr = 0, event = null
2: isConditionNegated = {}
3: for trigger ← triggersOf(path) do
4: conds = conditionsAssociatedWith(trigger, path)
5: while event != trigger && traceP tr <trace.len do
6: event = trace[traceP tr]
7: for cond← conds do
8: if cond.device = event.device &&

cond.attribute = event.attribute then
9: if cond.value! = event.value then

10: isConditionNegated[cond] = true
11: else
12: isConditionNegated[cond] = false
13: end if
14: end if
15: end for
16: traceP tr++
17: end while
18: if any(isConditionNegated, conds) then
19: return false
20: end if
21: if traceP tr == trace.len && event != trigger then
22: return false
23: end if
24: end for
25: return true

Fig. 3. Algorithm to determine if a given path is satisfied (i.e.,
satisfied(path)) based on the events in trace .

18). Otherwise, the path is satisfied (Line 25).
This algorithm is best-effort and may not always be ac-

curate. A smart home is stateful and local information from
the most recent traces may not be enough to make the right
decisions; it is not always possible to determine the truth value
of a condition. For example, a condition that the home is in
HOME mode cannot always be determined from the most
recent traces, as HOME mode may have been set hours or
even days ago. While it may be possible to simply store the
all updates to state of the smart home, including state changes
from multiple days ago, we surmise this poses a privacy risk
if this monitoring service is ever compromised [19], [20].

IV. EMPIRICAL EVALUATION

We are interested in answering 2 research questions:
• RQ1: How frequently do handcrafted security policies

lead to false positives?
Existing approaches detect security issues from the joint
behavior of multiples apps. We claim that their hand-
crafted policies may produce many false positives. In this
research question, we investigate if individual benign
apps violate the security policies. As users are likely
to understand and reason about individual apps, we

assume that, if installed, their behaviors are intentionally
introduced into a smart home.

• RQ2: How effective is IoTBox?
In this research question, we investigate the effectiveness
of IoTBox against DSM, previously proposed for Android
apps, and a simple strawman sandbox.

A. RQ1: How frequently do handcrafted security policies lead
to false positives?

This research question investigates the prevalence of false
positives from the use of handcrafted security policies from
prior work. We test a random sample of 500 apps from public
repositories containing existing apps [21], [22]. For each app,
we check the model produced by IoTCOM against the 36
policies used in IoTCOM [6]. These policies are similar to
the policies used in other studies [3]–[5]. As we only test
individual apps, all violations are not caused by interactions
between apps, and are likely to be from behaviors that were
intended if a user installed the app.

1) Findings: We find that out of the 500 apps, 326 of
them (65%) violate at least one policy, with a total of 572
violations. On average, there is 1 violation per app. If deployed
in a real setting, many violations of the security policies are
false alarms. While the security policies can catch dangerous
behaviors, they cannot be used out of the box.

One cause of the numerous false alarms is that the policies
are too broadly specified, causing IoTCOM to detect violations
even for legitimate uses. For each app, we describe the policy
violated (based on the policies used in IoTCOM [6]), highlight
the reason for the violation, and if the violation of the policy
is intended. False alarms can come from either surprising uses
of devices or from IoTCOM’s overapproximation of execution
paths that will not be taken in reality. While we discuss only
4 violations (out of 326) in Table I, we expect that, in the
wild, there are many situations where IoT devices are used
in unexpected ways. Many of these uses will violate security
policies that do not anticipate surprising uses. This problem
was also observed by Celik et al. [3]. For example, they
reported anecdotes of users using flood sensors that produce
alerts when water levels are low (contrary to its expected use
in detecting floods) for reminders to water their plants.

Researchers have pointed out that users rarely use tools that
produce many false positives, inhibiting its usage [26]–[28].
Users would need to apply significant effort to understand and
tweak each security policy to their smart home. This finding
motivates more research into automating this process.

B. RQ2: How effective is IoTBox?

To inveistate the effectiveness of IoTBox, we compare the
number of bundles of apps in which IoTBox successfully
identifies malicious changes in behavior. In all cases, we
compare IoTBox against two baseline techniques, a strawman
sandbox and DSM [10]. All techniques take traces of events
as input. First, for each bundle, we produced events based
on the formal models to simulate the smart home, triggering
an average of 1208 actions. Next, to confirm our findings, we



TABLE I
BEHAVIORS OF INDIVIDUAL APPS THAT VIOLATE THE HANDCRAFTED SECURITY POLICIES. POLICIES PREFIXED WITH P INDICATES A SAFETY PROPERTY,

WHILE T INDICATES A GENERAL COORDINATION THREAT.

Policy Violated (policy identifier in the IoTCOM paper) Reason for violation
Intended; the app (use outdoor temp to turn on off a switch)

The heater should not be turned off when the temperature is low (P.7) switches off a switch (which may be the heater) based on the
temperature outside, not inside the smart home.
Intended; the app (IlluminatedResponsetoUnexpectedVisitors [23])

Lights are not switched off if someone is at home (P.9) toggles the lights on and off for illuminating someone
snooping about the house (e.g. a burglar), switching the lights
off if the burglar has left.
Intended; the app (LockDoorafterXminutes [24]) sets a variable

No rules with conflicting actions but same triggers/conditions (T7) for internal bookkeeping (to track that the door was
automatically opened), but sets it to a different value
(that it has been closed) after some time.

Location mode should be set to HOME when Intended; while the user is home, the app
someone is at home (P.15) (MotionModeChange [25]) may set the mode to NIGHT.

generate tests on the SmartThings Simulator and collect traces
from the app executions, triggering 555 actions on average.

1) Experimental Setting: We use the flawed apps that were
studied previously. We use the bundles of apps from IoTMAL,
used in the evaluation of previous studies (Bundle 1-6) [3], [6].
Furthermore, we proposed new bundles of apps (Bundles 7-
16), constructed with individual, flawed apps proposed in prior
studies [3] and combining them with other benign apps. We
study the same apps used in the evaluation of IoTCOM [6].
Bundle 17 is the example from Figure 1, and we constructed
a malicious variant by removing a transition to HOME mode.

In each bundle, we locate the app with malicious behavior
and create a variant of the bundle by removing the unsafe
logic. To evaluate the ability of IoTBox to detect missing be-
havior, we constructed variants of several bundles by removing
a piece of behavior required for it to function correctly. We
pass the benign bundles of apps as input to IoTBox, which
explores their behaviors and constructs rules for the execution
of each action. Thus, in this work, a benign bundle of apps
is the modified bundle of apps without malicious behavior.
A malicious bundle of apps is either 1) the original bundle
containing an app with a malicious behavior, or 2) a bundle
of apps modified from a benign bundle to remove a necessary
behavior. A total of 17 benign bundles of apps were explored,
and 20 variants of these bundles of apps with either additional
malicious or missing necessary behavior were constructed.

Next, we statically produce execution traces of the bundles
of apps. The executions of the benign bundles of apps are
used for learning the sandbox for both the strawman sandbox
and DSM. The traces are produced from the models to allow
for a fair comparison of existing techniques and IoTBox, as
only the parts of the IoT app captured by the formal models
are used to produce traces. To produce events from the formal
models, we identify two types of event for each trigger and
predicate; one event will set the predicate to true, and another
will falsify the predicate. We track the state of the environment
as a mapping of the attributes of every device located in the
environment to one value. We model time using a counter,
which increases for every event. At each time step, a random

event will be selected for execution. As an event is executed,
the state of the environment is modified. Every time an event
is executed, we iterate over all the rules in the formal model
and determine for each rule, if its trigger matches the event,
and if its conditions have been met by the modified state. If
so, then an event that matches the command will be executed,
either immediately or after some time.

The execution traces from the malicious bundles of apps are
input to all techniques. If a technique rejects more than 1% of
actions, then we consider that it is able to detect the malicious
behavior in the bundle.

In simulating the apps’ executions, we constructed a chal-
lenging experimental setup. We produced a large number
of events while simulating the possibility of race conditions
between the apps. The triggering of apps may be delayed
to reflect real-world network conditions. Events from the
execution of an app may be interleaved between executions of
other apps. Thus, the threshold of 1% permits some degree of
false positives caused by these challenging conditions. Without
this threshold, DSM will find two times more false positives.
In practice, we expect that these challenging conditions will
not frequently occur. Also, we believe that users will find
reasonably rare false alarms to be acceptable. We manually
inspected the statically generated traces to verify if the traces
are plausible based on the source code. Of 50 randomly
sampled traces, none were infeasible.

The strawman sandbox detects if there is any action ex-
ecuted by the smart home that was not seen during the
exploration phase. Any previously unseen action is rejected.
DSM [10] takes the sequence of events and actions that occurs
before an action as input. DSM uses an automaton model,
inferred through a Recurrent Neural Network [10]. If the
events are rejected by this model, the action is prohibited.

We use IoTBox as described in Section III. Rules of
the sandbox are first learned through the exploration of the
modified bundles of apps without any malicious behavior.
Next, we test the sandbox against both the original bundle
of apps containing the malicious behavior, and the modified
bundles without malicious behavior. We count the number of



TABLE II
BUNDLES WITH MALICIOUS BEHAVIOR THAT WERE DETECTED. T

INDICATES THAT THE MALICIOUS BEHAVIOR WAS DETECTED, F
OTHERWISE. FP INDICATES THAT THE BENIGN BUNDLE WAS CLASSIFIED

AS MALICIOUS. (M) INDICATES BUNDLES WHERE THE MALICIOUS
CHANGE IS A REMOVAL OF EXISTING BEHAVIOR.

Bundle Strawman DSM IoTBox
1. Bundle 1 F F T
2. Bundle 2 T T T
3. Bundle 3 T T, FP T
4. Bundle 4 T T, FP T
5. Bundle 5 T T T
6. Bundle 6 T T T
7. MaliciousBatteryMonitor [16], [31] T T T
7 (M) F F F
8. ID1BrightenMyPath F T T
9. ID2SecuritySystem F T T
10. ID3SmokeAlarm F T F
11. ID4PowerAllowance F F,FP F
12. ID5FakeAlarm F T T
12 (M) F F T
13. ID6TurnOnSwitchNotHome T T T
13 (M) F F T
14. ID7ConflictTimeandPresence F T F
15. ID8LocationSubscribeFailure (M) F F T
16. ID9DisableVacationMode T T T
17. Figure 1 (M) F F T
# True Positives 8 13 16
# False Positives 0 3 0
Recall 40% 70% 80%
Precision 100% 75% 100%
F1 57% 72% 88%

malicious bundles of apps that were correctly identified (True
Positives), the number of benign bundle of apps identified
as malicious (False Positives), and the number of malicious
bundle of apps identified as benign (False Negatives).

We evaluated the effectiveness of the tools using Precision,
Recall, and F1. Precision and Recall are computed as follows:

Precision = TP
TP+FP Recall = TP

TP+FN

A precision of 100% indicates that the absence of false
positives, while a recall of 100% indicates that every malicious
behavior was caught. Finally, F1 is the harmonic mean of
precision and recall. These metrics are widely used in the
literature of both mining sandboxes [10], [11], as well as other
related domains such as the detection of malware [29], [30].

2) Experimental Results from Statically Produced Traces:
Table II summarizes our results on the static traces, for 16
out of 20 bundles, IoTBox detected a change in behavior that
should be disallowed. In contrast, DSM and the strawman
detected only 13 and 8 bundles with changed behavior.

We evaluated the techniques on false alarms and found
that DSM produced false positives on 3 bundles. Both the
strawman and IoTBox do not produce false positives.

As we produced over a thousand traces, we rule out a lack
of training data as a reason for DSM’s relative ineffectiveness.
We hypothesize that its poor performance is caused by the tight
coupling of its decisions to the local context, requiring that all
necessary information to make the right decision appear in the
most recent traces. In fact, the relevant events to make the right
decision can occur far apart from one another. While Le et

al. [10] suggests that DSM’s use of Recurrent Neural Networks
may help in capturing long-term dependencies between events,
still, an IoT system is stateful and the relevant state changes
may have occurred before the collection of the most recent
traces. Ultimately, DSM is fooled by spurious patterns in the
most recent traces. On the other hand, IoTBox encodes domain
knowledge of IoT apps, only loosely enforcing conditions to
check if they are satisfied.

Only IoTBox can detect changes in behavior that result in
missing actions (indicated with (M) in Table II). Both DSM
and the strawman do not detect missing actions. On the other
hand, IoTBox detects 4 out of 5 cases with missing actions.

Both the strawman sandbox and IoTBox have 100% preci-
sion. Overall, IoTBox performs best, in terms of Recall and
F1 score. Even if we omit the cases with missing actions, then
IoTBox has a Recall of 60% and an F1 of 75%. Overall, we
believe that there is sufficient evidence to suggest that IoTBox
is more effective than existing sandbox mining techniques.

3) Experimental Results on Traces from Test Case Gen-
eration: Next, we investigate the effectiveness of IoTBox
on traces produced from test case generation. This approach
uses the SmartThings simulator [32]. We instrument the apps,
adding log statements to them.This allows us to collect infor-
mation about the state of the smart home without modification
to the platform that the apps runs on. Our objective is to elicit
enough traces to evaluate IoTBox to determine if our findings
are likely to hold in practice.

Our test generation strategy identifies relevant event types
by detecting which devices are present in the smart home.
After that, it randomly generates events of these types through
the simulated devices in the SmartThings IDE. As some apps
are time-sensitive, we transform the Groovy programs, re-
placing time-related functions with mocks. Our test generator
simulates the passing of time. Instead of using the current real-
world time, the app fetches the mocked time from our server.
Time monotonically increases with the number of executed
events; every time an event is executed, the test generator
advances time by a random number of minutes. For functions
scheduled to run after some time (i.e., using runIn), we set
its waiting duration to between 1 to 3 minutes, giving them a
high chance of executing within the experimentation duration.

Execution traces are collected from the logs. Each trace is a
sequence of events and actions executed by the apps. For each
bundle, we generate tests for over an hour. The same execution
contexts are used, unmodified, from the previous experiments.

Due to the limitations of the SmartThings simulator, we
restrict our analysis to only a few bundles of apps. The
simulator cannot simulate physical channels of interactions
(e.g. an app switching on a lamp may trigger an app reading
from a light sensor), and does not support simulating every
device type, a known limitation of test generation on the
SmartThings simulator [16]. Therefore, we cannot create an
accurate simulation of several bundles (Bundles 4-7, 12-14) in
our evaluation dataset. We also omit Bundles where IoTBox
was ineffective on the static traces (Bundles 10, 11).



TABLE III
EFFECTIVENESS OF IOTBOX ON TRACES FROM TEST GENERATION. NOT

ALL BUNDLES CAN RUN ON THE SMARTTHINGS SIMULATOR AS THEY USE
DEVICES UNSUPPORTED BY THE SIMULATOR.

Bundle Malicious Behavior Detected
1. Bundle 1 T
2. Bundle 2 T
3. Bundle 3 T

8. ID1BrightenMyPath T
9. ID2SecuritySystem T

16. ID9DisableVacationMode T
17. Figure 1 (M) T

Our results are shown in Table III. IoTBox detects the
malicious changes in behaviors on all seven bundles of apps.
As before, there are no false positives. Overall, these results
agrees with the evaluation results using the statically produced
traces in Table II, and supports our findings that IoTBox is
effective in mining sandboxes for a smart home.

V. DISCUSSION

A. Risk of encoding malicious behavior in the sandbox

In any technique mining sandboxes, there is a risk that
the mined rules encode malicious behavior that was already
present in the smart home [9], [12]. If so, the sandboxing phase
does not prevent its execution as it is an expected behavior.
This is one source of false negatives [9], as the malicious
behavior would be considered benign. On the other hand,
this implies that the malicious behavior is already explicitly
described in the security policy mined during the exploration
phase and can be checked by a human user.

We analyze the quality of the rules produced by IoTBox.
The rules mined by IoTBox are precise, expressed as Alloy
assertions. Furthermore, IoTBox can visualize the paths from
any unexpected trigger to a given action. This lends the rules
to inspection by human users of an IoT system.

We investigate what a malicious behavior encoded in the
rules may look like. We use the running example involving
the unlocking of doors introduced in Figure 1, and now,
we point out it was crafted with a flaw in mind. While
it correctly unlocks the door when the smart home transits
to HOME mode, in fact, it unlocks the door in any mode
change, including mode changes away from HOME (e.g. to
AWAY) [33]. This behavior is unexpected to our hypothetical
user who did not carefully inspect the app.

In Figure 4, we show a more complete version of the graph
from Figure 1 (in Section 1) with this surprising behavior.
An excerpt of the security policy mined by IoTBox is shown
in Figure 5. Both the Alloy assertion and accompanying code
comments, generated by IoTBox, makes it simple to determine
the events that led to the smart home automatically unlocking
the app. Also, IoTBox can present all paths that lead to a given
action from a given event, providing a visualization identical
to the graph shown in Figure 4. In this case, our hypothetical
user may inspect the security policy and will be surprised that
toggling a particular switch will always trigger the unlocking

Motion
detected HOME Mode

Switch on

Unlock Door

AppTouch

AWAY ModeSwitch off

Fig. 4. An undesired path (from the interaction of App2 and App3 in dotted
lines) to unlock the door is already in the smart home before the exploration
phase. Undesired paths may not be easily noticed, but IoTBox helps detect
such paths through its interpretable rules.

of the door. Thus, the user will be able to identify existing
undesired behavior with the help of IoTBox.

assert {
// if the lock is automatically unlocked,
// it is caused by ...
no r : IoTApp.rules, action : r.commands {

action.attribute = lock
action.value = unlock
(some predecessor : r.*(˜connected),

action’ : predecessor.triggers {
not {
. . . // omitted code
// the switch turning on OR off
action’.attribute = switch
(action’.value = switch_on

or
action’.value = switch_off)

}
)

}
}

Fig. 5. Excerpt of the Alloy assertion revealing possible triggers.

IoTBox allows malicious behaviors to be executed provided
that they were encoded in the execution context. While this
seems to be a limitation, this is, in fact, a strength of sandbox
mining. Writers of malicious apps are forced to “disclose-or-
die” [9], as any malicious behavior must be made explicitly
detectable for analysis. Otherwise, the sandbox will prevent
its execution. If so, a user of an IoT environment can detect
the malicious behavior through inspection of the assertion and
the visualization of paths leading to an action, both produced
by IoTBox, to locate the undesired behavior.

B. Limitations and Tradeoffs

The primary difference between IoTBox and existing tech-
niques that mine sandboxes is its use of models produced from
static analysis, instead of using test generation. Fundamentally,
the previous techniques use test complement exclusion [17].
This relies on the incompleteness of test case generation;
test generation cannot explore all possible behaviors. If only
normal behaviors were observed from testing during the explo-
ration phase, then it guarantees that the sandbox allows only
normal behaviors to run. IoTBox relies on a variant of this
guarantee; only behaviors captured in the formal model can



be executed. Conversely, potentially dangerous behaviors that
were not analyzed are disallowed from running.

We do not learn from normal executions but include all
behaviors that were abstracted into an app’s model. By doing
so, we gain the advantage of fewer false alarms as more
behaviors are covered compared to test generation. On the
other hand, static analysis usually overapproximates possible
behaviors, introducing the possibility of including malicious
behavior in a model. This is mitigated in IoTBox through non-
opaque rules that can be interpreted by human users.

C. Threats to Validity

We mitigate threats to internal validity by relying on the
models and tool used by other researchers [6], with a for-
malism of an IoT app (abstracted into triggers, conditions,
and commands) that is similar to that of other studies [3]–[5],
[16]. In some cases, we find that the Alloy models produced by
IoTCOM are not directly usable (e.g. as they do not compile),
so we modified them. Our models are publicly available [34].

To minimize threats to construct validity, we have used
the evaluation metrics from previous studies [10], [11]. We
evaluated the risk of false negatives, similar to Jamrozik et
al. [9]. Moreover, we studied the same flawed IoT apps from
a previous study [6], and many of these apps have also been
studied in other works [3], [5], [16], [35]. We studied 20
bundles of apps, similar to prior studies. Jamrozik et al. [9]
and Le et al. [36] studied 13 and 25 Android apps, and Wan
et al. [12] studied 8 Linux containers.

A threat to external validity is that our experiments fo-
cuses only on the SmartThings and IFTTT platforms. Other
smart home platforms include Apple’s HomeKit [37], Google
Home [38], Zapier [39], and Home Assistant [40]. However,
as SmartThings support more devices than competing plat-
forms [13] and IFTTT has over 11 milion users, we expect
our findings to generalize. Our process of instrumenting apps
is limited only to the SmartThings platform.

VI. RELATED WORK

Mining sandboxes. Compared to existing studies on mining
sandboxes [9]–[12], IoTBox does not use test case generation
due to the difficulties of generating comprehensive test cases
for an entire IoT system. Instead, IoTBox explores a formal
model of the smart home, identifying the execution context of
an action through the counterexamples found by the Alloy
Analyser [15]. This has the advantage of identifying only
events that have a causal relationship with a given action
through analysis of the behavioral rule graph.

Related to mining sandboxes, Acar et al. [41] suggest that
the automatic generation of security policies may help to
address the permission comprehension problem on Android.
Provos [42] proposed learning policies for system calls in
UNIX systems. IoTBox is the first approach to account for
context that spans multiple apps in a smart home.

Threats in an IoT system. Researchers have studied
threats at the application-level on IoT platforms [1], [3]–[7],
[31], [43]–[46]. ContexIOT [16] considers the context of an

app in isolation, missing out on threats spanning multiple
apps. Some studies have shown the prevalence of incorrect
behavior in IoT applications [6], [22], [45], [46]. Compared to
IoTMon [1], Soteria [3], IoTGuard [5], HOMEGUARD [44],
IoTSan [4], IoTCOM [6], iRuler [7], our work shares the goal
of identifying malicious behavior from the interaction of apps,
but different from these studies, has the objective of inferring
rules that help to detect behavioral changes.

IoTBox and ProvThings [43] share similarities. Both trace
the origins of events, traversing graphs of apps connected by
how they trigger and influence the execution of one another.
However, they have different goals. IoTBox mines rules for
a sandbox to detect behavioral changes while ProvThings
collects information for debugging.

Other aspects of IoT systems have been studied [20],
[47]–[50]. Researchers studied the impact of platform com-
promise [20] and suggested the need to minimize potential
damage from an adversary that has compromised an IoT
platform. Various security aspects, including the misuse of
devices for botnets [48], [51] and firmware security [49], [50],
have been studied but have different goals from our work.

Other researchers have shown that developers face diffi-
culties interpreting behaviors in IoT apps [19], [52]–[54].
IoTBox may help in debugging, as it can reveal unexpected
changes in behavior. Researchers have suggested the need
to simplify the configuration of privacy policies [55]. There
are many concerns, such as privacy concerns of other users
in the smart home [19]. Our work may find application in
interpreting the automation in a smart home. Indeed, other
researchers have pointed out the need for tools that present
the effects of enabling a new app and to identify unforeseen
consequences [56].

VII. CONCLUSION AND FUTURE WORK

In this work, we show that handcrafted security policies
for smart home may produce many false alarms and suggest
the need to automate the specialization of these policies for a
smart home. We propose IoTBox to mine sandboxes of IoT
systems, which detects behavioral changes in IoT systems. A
sandbox with rules mined from an existing smart home will
produce few false positives. IoTBox produces rules that can
be inspected by a human user. IoTBox identifies the complete
execution context of any action, producing rules that can be
enforced to detect both disallowed and missing actions.

IoTBox comprehensively explores the behaviors of a smart
home to precisely identify rules. We evaluated IoTBox on
app bundles containing flawed behavior, including incorrect
behaviors caused by interactions between apps, that were stud-
ied in prior work. We find that it effectively detects changes
that introduce malicious behavior. A replication package is
available [34]. In the future, we hope to evaluate IoTBox on
other IoT platforms.
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