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ABSTRACT

Modern software engineering projects often depend on open-source
software libraries, rendering them vulnerable to potential security
issues in these libraries. Developers of client projects have to stay
alert of security threats in the software dependencies. While there
are existing tools that allow developers to assess if a library vulner-
ability is reachable from a project, they face limitations. Call graph-
only approaches may produce false alarms as the client project
may not use the vulnerable code in a way that triggers the vulnera-
bility, while test generation-based approaches faces difficulties in
overcoming the intrinsic complexity of exploiting a vulnerability,
where extensive domain knowledge may be required to produce a
vulnerability-triggering input.

In this work, we propose a new framework named Test Mimicry,
that constructs a test case for a client project that exploits a vulner-
ability in its library dependencies. Given a test case in a software
library that reveals a vulnerability, our approach captures the pro-
gram state associated with the vulnerability. Then, it guides test
generation to construct a test case for the client program to in-
voke the library such that it reaches the same program state as the
library’s test case. Our framework is implemented in a tool, Trans-
fer, which uses search-based test generation. Based on the library’s
test case, we produce search goals that represent the program state
triggering the vulnerability. Our empirical evaluation on 22 real
library vulnerabilities and 64 client programs shows that Transfer
outperforms an existing approach, Siege; Transfer generates 4x
more test cases that demonstrate the exploitability of vulnerabilities
from client projects than Siege.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; Search-based software engineering.
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1 INTRODUCTION

Software engineering projects often depend on open-source soft-
ware libraries [46, 55, 65]. As vulnerabilities in a project’s library
dependencies may be exploited by attackers of the project, devel-
opers have to understand their project’s dependencies and update
them whenever library vulnerabilities are discovered. For example,
the recent Log4Shell vulnerability, which affected millions of de-
vices, required client developers to update their applications to use
the latest version of the Log4J library quickly [4, 11]. Moreover, as
the clients of a library include other libraries, a vulnerability in one
library would transitively propagate throughout the ecosystem of
libraries and their clients.

After library vulnerabilities have been fixed and publicly dis-
closed, client developers are advised to update their dependencies
to use the new, non-vulnerable versions of libraries. However, stud-
ies have shown that client developers are reluctant to update their
dependencies. Many alerts regarding vulnerable dependencies are
false alarms [55], and developers may be wary of breaking changes
from library updates. This leaves client projects open to exploitation
of vulnerabilities in library dependencies [28, 46, 51, 65].

To address this problem, there have been proposed techniques
that assess the reachability of the vulnerable code (e.g. function)
from the client project, allowing developers and security researchers
to better assess a vulnerability’s exploitability from the client project.
Existing techniques use call graph analysis to determine if the vul-
nerable code is called from the client project [32, 40, 58]. As control-
flowwithin functions is not considered, existing techniques produce
false alarms [32]. Fundamentally, these tools are limited since they
check only if a vulnerable function may be called, but do not de-
termine if the client projects are able to construct the inputs that
trigger the vulnerability [32, 40, 58].
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Recently, Iannone et al. [40] proposed Siege, a tool that automati-
cally generates test cases demonstrating the exploitability of library
vulnerabilities for client projects [40]. Given a description of the
vulnerability, which is manually determined from a vulnerability-
fixing commit, Siege targets the coverage of a single line of library
code indicated. Siege generates test cases of the client projects
that transitively execute the line of code, thus, providing evidence
that the library vulnerability can be reached from the client project.
While Siege could confirm the exploitability of some vulnerabilities,
it is limited by its inability to overcome the intrinsic complexity of
exploiting vulnerabilities; specific domain knowledge is required
for triggering many vulnerabilities [40].

Recreating the triggering conditions of a vulnerability may be
challenging because of the domain knowledge required. Take CVE-
2019-12402 [3] in Apache Tika as an example: an attacker can
trigger a denial-of-service attack by providing a zip file quine1, a
specially-crafted zip file that is unzipped to produce itself as output.
It is extremely hard to build a zip file quine with random mutations
(as in fuzzing) even with some guidance.

To overcome the challenging requirement of extensive domain
knowledge, we propose to leverage test cases of the vulnerable,
open-source libraries, particularly the test cases that accompany
the vulnerability fixes. Specifically, we propose a new framework,
which we term Test Mimicry, depicted in Figure 1. Expert domain
knowledge and the conditions (e.g., specific inputs, program state)
of triggering a vulnerability are captured in the test cases written by
the domain experts. Rather than blindly generating test cases, we
generate test cases of the client project that invokes the vulnerable
method with the same arguments as the library’s vulnerability-
witnessing test cases. Rather than designing oracles to detect if a
vulnerability has been triggered, we detect the replication of the
program state reached in the vulnerability-witnessing test case.

Concretely, our framework uses the vulnerability-witnessing
test case from the library’s code, denoted as LT , to generate a test
case, denoted as CT , for code in a client project that mimics LT .
CT should test the client program such that the library exhibits the
same behavior when it was tested with LT . If the same program
state reached by LT can be reproduced, then the vulnerability can
be triggered from the client program. If so, then we have evidence
that the vulnerability is exploitable from the client project.

To this end, we implement a tool, Transfer. Transfer targets
client projects of open-source Java libraries. Given a library func-
tion, VF, associated with a known vulnerability, Transfer executes
the library test case, LT , that demonstrates how the vulnerability
can be triggered. After identifying the program state relevant to the
vulnerability, Transfer extracts the triggering conditions, 𝜎 , which
are satisfied by reaching the same program state from a generated
test case. Transfer uses an evolutionary algorithm to generate test
cases, directing it to transitively invoke VF through the client pro-
gram and favors test cases closer to satisfying 𝜎 . Finally, Transfer
outputs a test case if it is sufficiently close to satisfying 𝜎 .

We evaluate Transfer by analyzing 22 real library vulnerabil-
ities from a wide range of domains (e.g. JSON parsing, file com-
pression) and types of vulnerabilities (e.g. XXE injections, unhan-
dled exceptions). Analyzing 64 real client programs obtained from

1https://www.cvedetails.com/cve/CVE-2019-10094/

Figure 1: Test mimicry: Constructing a test case, CT , for the
library’s client that demonstrates the same library vulnera-

bility as witnessed by a library’s test case, LT .

GitHub, we find that a library vulnerability can be exploited from
42 of them. While Siege produces exploits for 5 client programs,
Transfer generates exploits for 23 client programs.

In this study, we make the following contributions:
• We propose the novel framework of test mimicry, address-
ing the problem of missing domain knowledge when assess-
ing the exploitability of library vulnerabilities.
• We implement Transfer, which guides test generation to
reproduce the same program state as the library’s test case
when invoking the vulnerable function.
• Our evaluation shows Transfer successfully generates 4x
more exploits than the state-of-the-art approach Siege [40].

2 BACKGROUND AND MOTIVATION

Our work builds on prior studies on software composition analysis
and search-based test generation. In this section, we describe them.

2.1 Software Composition Analysis

Software composition analysis is a domain related to the identi-
fication and replacement of vulnerable dependencies of software
projects [32, 58]. Many solutions enumerate through a project’s
dependencies to detect potentially vulnerable libraries (i.e., looking
up the versions of the project’s dependencies against a database
of known vulnerable library versions). From the source code of
the project, a call graph is constructed to determine if a vulnerable
library function is reachable. These analyses produce false positives
as static call graphs may contain calls that do not occur at run-
time [35, 61]. Hence, existing approaches [32, 58] complement the
static analysis with dynamic analysis by running the client projects’
test cases to construct call graphs, which reduces the number of
false positives. These techniques are limited by the test coverage
of the client projects, which may be low [43, 44]. Fundamentally,
call graph-based approaches are limited as they do not consider
control-flow or check that the inputs for triggering the vulnerability
can be passed from client programs [32, 40, 58].

Siege [40] is a search-based test generator that produces exploits
on client programs that executes vulnerable library code. These
exploits are in the form of test cases that reveal how the library
vulnerabilities can be exploited from the client programs. Exploits
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Algorithm 1: Simplified version of a genetic algorithm for
generating test cases
Inputs: 1. 𝑔𝑜𝑎𝑙𝑠 , the search goals

2. M , the population size
3. search_budget, amount of time to run

Output: 𝑡𝑒𝑠𝑡𝑠 , test cases
1 𝑃0 = construct_random_population(M)
2 k = 0
3 fitness = compute_fitness(pop, goals)
4 best_fitness = max(fitness)
5 while best_fitness < 1 and time spent < search_budget do
6 k = k + 1
7 // offsprings through mutations and crossover
8 offsprings = generate_offspring(𝑃𝑘−1)
9 // evaluate fitness and pick top M tests

10 𝑃𝑘 = 𝑃𝑘−1∪ offsprings
11 fitness = compute_fitness(𝑃𝑘 , goals)
12 𝑃𝑘 = select_top_M(𝑃𝑘 , fitness)
13 end

14 return 𝑃𝑘

produced by Siege and our tool, Transfer, act as evidence of the
exploitability of the library vulnerability from the client projects.

2.2 Search-Based Test Generation

Search-based techniques have been proposed for generating test
cases to satisfy a specified search criterion. EvoSuite generates test
cases that achieve high coverage for Java programs [33]. Siege [40]
assesses the exploitability of library vulnerabilities from client pro-
grams generating a test case for the client program, guided by the
criterion of executing a vulnerable line of library code given as
an input vulnerability description. Algorithm 1 shows a simplified
version of a genetic algorithm for generating test cases. Starting
with a population of randomly generated test cases, a fitness value
for each test case is computed with respect to the search goals (e.g.,
total code coverage for EvoSuite, how close the test is to covering
the vulnerable line of code for Siege). While the search budget
has not been exhausted and the optimal fitness value has not been
reached, the genetic algorithm produces a new generation of test
cases through mutations and crossovers on the previous generation
of the test cases. The top𝑀 test cases are selected based on their
fitness values to populate the next generation. As such, test cases
with poor fitness are removed from the population.

A challenge faced by search-based test generators is the repro-
duction of complex behaviors. It is difficult for unguided, random
test case generation to produce test cases that invoke complex be-
haviors. To generate test cases that invoke more complex behaviors,
many techniques have been proposed. One such method is seed-
ing [60], which uses existing knowledge about the program to help
solve the search process. For example, string and numerical literals
within the program are extracted into a constants pool. Seeding
increases the likelihood of the test generator using these values,
allowing it to pass difficult conditional checks. A related technique
is test carving [31, 60]. Test carving was proposed to convert larger

Figure 2: The information of a vulnerability given in NVD.

The high-level description of the vulnerability makes assess-

ing its possible impact difficult.

system tests to a set of smaller unit tests for the same project. The
technique extracts parts of the program state reached in the system
tests as they are executed, capturing potentially reusable objects
that can be recreated when constructing new test cases. The object
states that comprise the program state may be difficult to recreate,
and carving allows the construction of new test cases that starts
from the same program state.

In this work, we build Transfer using the infrastructure and
tooling provided by EvoSuite. Due to its maturity [12, 30], Trans-
fer uses EvoSuite’s implementation of the genetic algorithm, in-
cluding the crossover and mutation operators. Unlike EvoSuite,
Transfer seeks to reproduce, from client programs, the behavior
demonstrated by the vulnerability-witnessing test case. Transfer’s
search criteria are dynamically determined from execution of the
vulnerability-witnessing test case. Transfer targets the same vul-
nerable library function executed by the test case, producing new
test cases that satisfies the triggering conditions extracted from its
carved program state.

2.3 Motivating Example

From an alert about a new vulnerability in a library, e.g. CVE-
2020-13956, a developer of a project (which may itself be another
library) using the vulnerable library (e.g. Apache HttpComponents)
is unsure if the vulnerability can be exploited. Figure 2 shows the
vulnerability’s high-level description, indicating that the vulnerable
behavior occurs when a “misinterpreted authority component in re-
quest URIs” is input to the library.Without better understanding the
vulnerability’s exploitability and knowing that many alerts about
vulnerable dependencies are false alarms [56], the developer may
not prioritize the library update, leaving the library vulnerability
in the project open to exploitation.

On the other hand,with the test case generated byTransfer,
the developer has evidence of the exploitability of the vulnerability
from the client project. As seen in Figure 3, the test case shows
the client project class (HttpClient) and function (execute) that
transitively calls the vulnerable function, how the function from
the client program may be invoked to trigger the vulnerability (i.e.
the construction of multiple classes from the client project and a
concrete example of a malformed URL triggering the vulnerability,
http://blah@goggle.com:80@google.com). While Siege struggles to
construct a malformed URL, Transfer uses the example of the
malformed URL from the library’s test case. Providing evidence
of the exploitability of a vulnerable may motivate developers to
update their library dependencies.

Given the growing prevalence of library vulnerabilities, their
widespread impact, and the importance of detecting them, reducing
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Conf ig c on f i g = new Conf ig ( ) ;
B a s i c C l a s s i cH t t pR e q u e s t h t t pReque s t =

new Ba s i cC l a s s i cH t t pR e q u e s t ( " / " , null ,
" h t t p : / / b lah@goggle . com : 8 0 @google . com / " ) ;

H t t pC l i e n t h t t p C l i e n t = new Ht t pC l i e n t ( c o n f i g ) ;
try {

h t t p C l i e n t . e x e cu t e ( h t t pReque s t ) ;
f a i l ( " Expec t i ng IOExcep t i on " ) ;

} catch ( IOExcep t i on e ) {
v e r i f y E x c e p t i o n ( " C l o s e a b l eH t t pC l i e n t " , e ) ;

}

Figure 3: Snippet of a test case generated by Transfer, with

changes made for conciseness. The test case demonstrates

how the client program can transitively invoke VF with in-

puts that triggers the vulnerability.

the difficulty of generating exploits for even a proportion of vulner-
abilities would already be helpful. Moreover, writing test cases for
bug fixes is considered a good software development practice [16].
Still, we assess the feasibility of using test cases from libraries. We
looked for vulnerabilities reported in vulnerability databases [9, 10].
From the entries between March 2017 and March 2021, we sampled
780 entries containing a reference to a GitHub commit fixing the
vulnerability. From the 780 entries, we identified 233 vulnerabilities
from libraries. Of the 233 vulnerabilities, 121 (over 51%) of the com-
mits include a test case, showing that a majority of vulnerabilities
are fixed with test cases. This indicates that test mimicry is likely
to work for a large number of vulnerabilities.

3 TEST MIMICRY

In this section, we describe the details of our tool, Transfer.

3.1 Objectives and Problem Formulation

From a known vulnerability in a library and a function associated
with the vulnerability, the vulnerable function, VF , a client program
is a program from a different project using the library. Given a test
case, LT , that witnesses the vulnerability, our goal is to assess if
the library vulnerability can be exploited in the client program by
deriving a test case CT for the client program that mimics LT .
We refer to CT as the exploit (from the client program) and LT
as the vulnerability-witnessing test case (from the library code). We
consider that a library vulnerability can be exploited from the
client project if CT can be generated. CT is a test case invoking
public functions of the client program and transitively executes VF
to exhibit the same behavior witnessed by LT .

3.2 Approach

Figure 4 presents an overview of our tool, Transfer. Transfer
takes as input 1) the vulnerability-witnessing test case, LT , from
an open-source library, 2) the vulnerable library function, VF, and 3)
the code of the client project that uses the vulnerable library. After
instrumenting and executing LT , Transfer extracts the triggering
conditions, 𝜎 , from the carved program state. Transfer generates

a test case (that executes the client program) that satisfies 𝜎 if it
finds one within the search budget.

3.2.1 Execution of LT . Test mimicry relies on information from
LT . Transfer instruments the library code to carve LT , Trans-
fer executes LT to invoke the vulnerable library function, VF ,
and collects the sequences of function calls and arguments to con-
struct and initialize objects. Based on inputs and outputs of VF , the
relevant parts of the program state are extracted ( 1 in Figure 4).

3.2.2 Search Goals. To achieve the high-level objective of repro-
ducing the vulnerable behavior, Transfer attempts to direct test
case generation towards code that executes VF and bring the pro-
gram to the same state as LT . To do so, Transfer constructs the
search goals ( 2 in Figure 4) that will guide the test generator.
Transfer uses two types of search goals: line coverage goals and a
goal that represents the vulnerability’s triggering conditions. After
computing a static call graph, Transfer determines the paths from
the client program that lead to VF . For the functions on the paths,
line coverage goals are constructed for the lines in the functions.
From the carved object states obtained from the execution of LT ,
Transfer extracts the vulnerability’s triggering conditions, 𝜎 .

Each search goal type is associated with a fitness function that
estimates the distance of a test case from satisfying the goal. For
a line coverage goal, the fitness functions measure how close the
test case came to covering the line. For the triggering conditions,
the fitness function is an estimate of similarity of the program state
when invoking 𝑉𝐹 to 𝜎 (described in Section 3.3).

Line coverage goals for directed test generation. While our
objective is to satisfy the conditions of triggering the vulnerability
when transitively invoking VF , generating a test case that invokes
VF through the client program can be challenging. To address this
challenge, Transfer constructs line coverage goals for the lines
of the functions in the call graph between the client program and
VF , directing the search towards test cases that are closer (covering
code on paths in the call graph that end at VF ) to invoking VF .

Transfer uses a standard fitness function for line coverage using
branch distance [13, 50]. Based on the control dependencies of the
line, the branch distance heuristically estimates how close a test
case is to taking a correct branch that the line depends on (e.g. how
close the branch predicate is to becoming true) when an undesired
control-flow path is taken [13, 50].

Vulnerability-triggering conditions. Transfer carves LT
to obtain the program state associated with the triggering of the
vulnerability, from which it extracts values and properties of the ob-
jects to form the vulnerability triggering conditions. Test cases are
generated and evolved towards satisfying the triggering conditions.

To guide test generation towards the vulnerable behavior, the
fitness functions favor test cases that, through functions of the
client project, invokes VF with inputs and output having states that
come closer to satisfying 𝜎 . We provide more details in Section 3.3.

3.2.3 Evolutionary Test Generation. For test generation, Transfer
uses an evolutionary algorithm to favor the generation of fitter
test cases ( 3 in Figure 4, with a simplified version shown in
Algorithm1). Transfer seeds the object pool with the carved ob-
jects from LT , allowing Transfer to invoke the function calls to
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Figure 4: Overview of Transfer. From the vulnerability-witnessing test case from the library, Transfer produces a exploit for

the client project – the Software Under Test (SUT).

create complex objects from the library. Due to EvoSuite’s ma-
turity and effectiveness [12, 30], we use its representation (i.e., a
sequence of function calls) and implementation of test chromo-
somes, crossover, and mutation operators in Transfer. Transfer
uses the multi-objective DYNAMOSA [54] algorithm, shown to be
the state-of-the-art for search-based test generation.

The DYNAMOSA [54] algorithm was proposed for test gener-
ators to fully achieve the coverage of each individual goal. Other
algorithms may instead converge in a local optimum that mini-
mizes its distance from multiple objectives, but does not necessarily
satisfy any individual goal [54]. This characteristic of DYNAMOSA
makes it suitable for our work as our primary focus is to reproduce
the program state of the vulnerability regardless of how close the
test case is to covering the other (line coverage) goals.

Transfer’s effectiveness stems from test mimicry, i.e. dynami-
cally constructing search goals determined from the execution of
LT . In Transfer, the test case with the highest fitness with respect
to 𝜎 is produced as the output, CT , if its fitness is sufficiently high
(set to a fitness threshold of 0.9 in our experiments).

Once the triggering conditions are met or the search budget has
been used up, Transfer outputs the test case by considering only
the search goal representing the triggering conditions. We do not
consider line coverage goals when determining the best test case,
as an exploit, CT , may not have covered all lines in the functions
between the client program and VF in the call graph.

3.3 Satisfying a Vulnerability’s Triggering

Conditions

Transfer’s primary objective is the reproduction of the behavior
revealed by the LT . To detect that a test case has reproduced the
same behavior, Transfer uses the program state relevant to the
input and output of VF carved from the execution ofLT , extracting
a set of conditions as the triggering conditions, 𝜎 . 𝜎 abstracts over
the program state reached by LT .

To detect that a generated test case satisfies 𝜎 , Transfer com-
pares the inputs and outputs of VF with 𝜎 . If the test case success-
fully (transitively through the client program) invokes VF with
inputs and outputs that match 𝜎 , then 𝜎 is satisfied and we consider

that the test case has invoked VF with the same behavior as LT .
We emphasize that the test generator does not produce test cases
that directly call VF . Instead, Transfer produces test cases that
execute the client program, i.e., VF is transitively invoked through
the client program.

For example, based on the vulnerability discussed in Section 2.3,
Transfer identifies that the vulnerability is triggered from the pro-
gram state reached by passing “blah@goggle.com:80@google.com”
as an input to a function, URIUtils.extractHost used by the li-
brary to extract the host of a URL. Transfer generates test cases of
the client program that calls the library functions that may directly
or transitively invoke the URIUtils.extractHost function.

During test generation on the client project, we compute the
fitness of the test case with respect to the triggering conditions.
The fitness function estimates the similarity of the program state
reached by the generated test case as compared to LT .

Vulnerability triggering conditions. The triggering condi-
tions, 𝜎 , are predicates over the values of the input and output of
the VF . To detect if 𝜎 is satisfied, we can view it as the comparison
of the relevant objects captured in 𝜎 during the execution of LT
( 2 in Figure 4) and their corresponding values currently observed
during the invocation of VF (as part of test generation, 3 in Figure
4). The input of VF is its method receiver and arguments, and its
output is either its return value or an exception thrown during
its execution. To simplify our description, let us define 𝒂𝒄𝒕𝒖𝒂𝒍𝒔
to refer to the inputs and output of VF when transitively invoked
(through the client program) by a generated test case. We define
references as the corresponding values in 𝜎 , which capture the
input and output values observed during the execution of LT . Dur-
ing test generation, if all of actuals match their corresponding parts
in references, then 𝜎 is satisfied and CT has been found.

The similarity between actuals and references is the average sim-
ilarity between the individual elements of actuals and their corre-
sponding element in references. The best similarity value is 1 and
the worst similarity value is 0.

similarity(actuals, references) =
1
𝑁
×∑𝑁

𝑖=1 similarity(actuals[i], references[i])
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Algorithm 2: similarity_stringlike(actual, reference):
Computing the similarity of 𝑎𝑐𝑡𝑢𝑎𝑙 and reference when
they are string-like (e.g. String, char[])
Inputs: 1. actual, one of the objects in 𝑎𝑐𝑡𝑢𝑎𝑙𝑠 .

2. reference, one of the objects in references.
Output: similarity between 𝑎𝑐𝑡𝑢𝑎𝑙 and reference, a float

between 0 and 1.
function similarity_stringlike(actual, reference):

1 edit_dist = edit_distance(actual, reference)
2 max_len = max(length(actual), length(reference))
3 return max_len > 0 ? 1 - edit_dist / max_len : 0

For comparison between individual elements of actuals and
references, Transfer compares them based on their type. We con-
sider the following types of values:
• Primitive and enumeration values: For primitive values (e.g.,
long, int, char) as well as values of enums, Transfer di-
rectly compares their values.
• String-like values: For values of types byte[], char[], String,
Transfer compares them by computing the edit distance
normalized by the maximum length of the values.
• Objects: To compare two objects, Transfer compares their
externally observable states [27].
• Files: For files, Transfer treats them as objects, however,
any files read by LT are also made available for reading to
CT . File names are stored in the constant pool to allow test
cases to have a greater chance of reading the file.
• Exceptions: Exceptions can be thrown by VF . Transfer
considers any exception as the output of VF , comparing
its type and exception message.

3.3.1 Comparing Primitive or Enumeration Values. Transfer di-
rectly compares primitive values and enums. Primitive types in-
clude long, int, short, double, float, char, boolean. If actual matches
reference, then a similarity value of 1 is returned, otherwise a simi-
larity value of 0 is returned.

3.3.2 Comparing String-like Values. For values that are string-like
(i.e., char[], byte[], String), As shown in Algorithm 2, during
the generation of test cases, Transfer computes the edit distance
between the two string-like values. The fewer edits needed to con-
vert one value to the other, the more similar they are. The similarity
is then obtained by subtracting the edit distance normalized by the
length of the longer value from 1.

3.3.3 Comparing Objects. For objects, Transfer characterizes
them by their externally observable state, using inspector func-
tions [27] defined on the class. Inspector functions refer to public
methods that return a value and are side-effect free (determined
through a simple static analysis [33]). The state of each object is
then constructed using the values returned by the inspectors. An
example object state for a java.net.URI object is given in Figure
5.

Similarity of two objects Algorithm 3 shows the computation
of the similarity between 𝑎𝑐𝑡𝑢𝑎𝑙 and reference. First, Transfer
checks for null for both the actual and reference objects (Lines 1-9).

{
getHost () -> "google.com",
getPath () -> "/",
getPort () -> 80,
...
isOpaque () -> true ,
isAbsolute () -> true ,

}

Figure 5: Simplified example of the object state of a URI ob-

ject, identified through a mapping of its inspector functions

to their return values

Algorithm 3: similarity(actual, reference): computing the
similarity of two objects, 𝑎𝑐𝑡𝑢𝑎𝑙 and reference.
Inputs: 1. actual, one of the objects in 𝑎𝑐𝑡𝑢𝑎𝑙𝑠 .

2. reference, one of the objects in references.
Output: similarity between 𝑎𝑐𝑡𝑢𝑎𝑙 and reference, a float

between 0 and 1.
function similarity(actual, reference):

1 if reference == null 𝑎𝑛𝑑 actual == null then
2 return 1
3 end

4 if reference == null 𝑜𝑟 actual == null then
5 return 0
6 end

7 if actual.getClass() ≠ reference.getClass() then
8 return 0
9 end

10 𝑖𝑛𝑠 = 𝑔𝑒𝑡_𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟𝑠 (𝑎𝑐𝑡𝑢𝑎𝑙)
11 if ins is not empty then

12 obj_sim← ∑
𝑖𝑛∈𝑖𝑛𝑠 similarity(actual, reference, in)

13 obj_sim← 1
|𝑖𝑛𝑠 | × obj_sim

14 return obj_sim
15 else

16 return 0
17 end

If both of them are null, then Transfer considers them to be a
match, otherwise, if either 𝑎𝑐𝑡𝑢𝑎𝑙 or reference is null, Transfer
assigns the lowest similarity score (similarity=0).

Transfer compares inspectors only if both of them are non-null
and are objects of the same class (Lines 10 to 17). The similarity
of the objects is computed as the average similarity between the
inspectors of the objects, which will be described in the next para-
graph. similarity(actual, reference) returns a value between 0 to 1,
where 1 is the highest similarity. Transfer conservatively rejects
the match if no inspectors are found (Line 16).

Similarity of two objects w.r.t an inspector. Algorithm 4
shows the computation of the similarity of 𝑎𝑐𝑡𝑢𝑎𝑙 and reference
with respect to a single, given inspector. Its return value is be-
tween 0 and 1, inclusively. For each inspector function, Transfer
uses a different similarity function based on the function return
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type. If the return type of the inspector is primitive, then the sim-
ilarity of the two values is computed using 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

(described in Section 3.3.1). If the return type is string-like, then
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑠𝑡𝑟𝑖𝑛𝑔𝑙𝑖𝑘𝑒 (Section 3.3.2) is invoked on the return values
of the inspectors instead. Otherwise, if the inspector returns an-
other object, we recursively invoke 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (Figure 3). To avoid
infinite recursion (e.g. a function returning the another object of the
same class), a depth parameter can be configured in Transfer. For
example, the normalize() function of a java.net.URI returns an-
other java.net.URI object. By default, we limit our consideration
of objects only up to a depth of two.

3.3.4 Comparing Files. For files that are accessed during the exe-
cution of the vulnerability-witnessing test, LT , they are treated as
objects (e.g. typically files are accessed through an InputStream
object or a File object, and can be treated as such). The files on the
filesystem are copied and made available during the generation of
CT . The filenames are added as strings to the constants pool, which
allows Transfer to use the filename when generating test cases.
As they are treated as objects, Transfer uses the same similarity
function (Algorithm 3).

3.3.5 Comparing Exceptions. Transfer compares exceptions thrown
by VF using their types (e.g. NullPointerException) and excep-
tion messages. While other studies [29] have used more sophisti-
cated methods of comparing exceptions, we find that the use of the
exception type and message is sufficient to guide test generation in
our experiments.

3.3.6 Computing the Fitness of a Test Case with Respect to 𝜎 . From
a single test case, the client program may invoke VF multiple times.
To compute the fitness score of a test case, Transfer takes the
highest similarity obtained among the multiple invocations of VF .
Each invocation of VF is associated with a set of inputs and outputs.
The similarity of an invocation, 𝑖𝑛𝑣 , to 𝜎 is computed based on
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑎𝑐𝑡𝑢𝑎𝑙𝑠, references), where 𝑎𝑐𝑡𝑢𝑎𝑙𝑠 are the inputs and
output associated with 𝑖𝑛𝑣 . In turn, the test case is as fit as the
similarity of the invocation most similar to 𝜎 :

similarity(inv, references) = similarity(actuals, references)
fitness(testcase) =𝑚𝑎𝑥 (similarity(inv)), inv ∈ invocations

3.4 Implementation

We implement our tool, Transfer, that realizes our novel frame-
work of test mimicry, on top of the implementation of the genetic
algorithm and other infrastructure of EvoSuite 1.1.0. Transfer
uses the DYNAMOSA [54] evolutionary algorithm for generating
test cases due to its suitability for our work and its strong perfor-
mance over other search algorithms in generating test cases [21, 54].
For evaluating the design decisions unique to Transfer, Trans-
fer uses the default configuration of EvoSuite as prior work has
shown that tuning EvoSuite’s parameters does not lead to im-
proved performance over its default configuration [14]. The size of
the population of test cases is 50 individuals. The default crossover
operator is used, which is the single-point crossover with probabil-
ity of 0.75. Test cases are selected using tournament selection, with
a tournament size of 10. Similar to EvoSuite, we use ASM [20] to
instrument the code, in particular, the vulnerable function VF .

Algorithm 4: similarity(actual, reference, inspector): Com-
puting the similarity score of an object to a reference object
with respect to a given inspector function
Inputs: 1. 𝑎𝑐𝑡𝑢𝑎𝑙 , an object from 𝑎𝑐𝑡𝑢𝑎𝑙𝑠

2. reference, an object from references
3. 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟 , a single inspector function

Output: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, between 0 and 1. 1 indicates that the
two objects are equivalent wrt to 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟 .

function similarity(actual, reference, inspector):
1 actual_ins← 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑜𝑟 (𝑎𝑐𝑡𝑢𝑎𝑙)
2 reference_ins← inspector (reference)
3 if inspector returns a string-like value then
4 return similarity_stringlike(actual_ins, reference_ins)
5 end

6 if inspector returns a primitive value then
7 return similarity_primitive(actual_ins, reference_ins)
8 end

9 if inspector returns another object then
10 return similarity(actual_ins, reference_ins)
11 end

4 EMPIRICAL EVALUATION

Our experiments aim to answer the following research questions:

RQ1. Can Transfer generate exploits in client programs

that demonstrate library vulnerabilities?

This research question is concerned with the efficacy of Trans-
fer in generating test cases that reveal client usage of vulnerable
library functions. Using a benchmark of library vulnerabilities and
code from client projects that we have identified by hand, we com-
pute the number of true positives and compute its accuracy. We
use Siege [40] as the baseline for comparison.
RQ2. How do the different search goals affect the effective-

ness of Transfer?

Transfer has two types of search goals: the primary search goal
of satisfying the triggering conditions, and line coverage goals for
directing test generation towards the vulnerable library function.
We investigate the impact of the goal types on the effectiveness of
Transfer via an ablation study.

4.1 Experimental Setup

Experimental subjects. In our experiments, we analyzed 22 re-
cent vulnerabilities from 18 libraries. We manually selected the
vulnerabilities for their diversity; the vulnerabilities manifest a
range of behaviors, ranging from timeouts and out-of-memory er-
rors (crash behaviors) to incorrect functional behaviors (non-crash
behaviors). Similarly, we selected widely-used libraries that cover
a range of domains, from file compression (Junrar), parsing XML
(Jackson, XStream) and JSON (Json-Smart, OSWAP Json), crypto-
graphic libraries (Bouncy Castle), to HTTP requests (HttpClient).
Consequently, the vulnerabilities are not restricted to a single do-
main. Apart from considering vulnerabilities publicly disclosed as
CVEs in the NVD database, we studied several vulnerabilities that
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Table 1: The vulnerabilities used in our experiments, including the names and descriptions of the vulnerable libraries, and

the effect of the vulnerability. ✕ indicates that an exploit could not be generated. A single ✓ indicates one exploit for a client

program was successfully constructed. Two ✓ indicates that exploits were successfully constructed for both client programs.

Vulnerability Library Library Description Effect of vulnerability Siege Transfer

CVE-2020-28052 Bouncy Castle Cryptography wrong functional behavior ✕ ✓✓

CODEC-134 [2] Apache Codecs Encoding (e.g. Base64) wrong functional behavior ✕ ✓✓

CVE-2020-13956 Apache HttpClient HTTP Requests wrong functional behavior ✕ ✓✓

HTTPCLIENT-1803 [7] Apache HttpClient HTTP Requests wrong functional behavior ✕ ✕

CVE-2019-14900 Hibernate ORM framework SQL injection ✕ ✕

CVE-2020-15250 JUnit Test Framework wrong file permissions ✓✓ ✓✓

CVE-2021-23899 OWASP JSON Sanitizer JSON processing arbitrary code injection ✕ ✓

CVE-2020-26217 XStream XML Serialization remote code execution ✕ ✓✓

CVE-2019-12415 Apache POI Word/PPT/XLS processing XXE Injection ✕ ✕

CVE-2018-1000632 Dom4J XML processing XXE Injection ✕ ✓

CVE-2020-10693 Hibernate ORM framework bypass input sanitization ✕ ✕

CVE-2018-1000873 Jackson JSON processing slow performance ✕ ✕

CVE-2019-12402 Apache Compress File Compression infinite loop ✕ ✓

CVE-2018-12418 Junrar File Compression infinite loop ✕ ✓✓

CVE-2019-10094 Apache Tika Processing files (e.g. xls, pdf) infinite loop ✕ ✓

TwelveMonkeys-595 [5] TwelveMonkeys Image processing infinite loop ✕ ✕

CVE-2020-28491 Jackson JSON processing out of memory ✕ ✕

CVE-2018-1274 Spring Framework Web development out of memory ✕ ✕

CVE-2021-27568 Json-smart JSON parser exception ✓ ✓

Zip4J-263 [6] Zip4J Processing ZIP files exception ✓✓ ✓✓

Spring Security-8317 [8] Spring Framework Web development exception ✕ ✓✓

CVE-2017-7957 XStream XML serialization exception ✕ ✓✓

Total 5 23

were fixed silently [26, 62]. These vulnerabilities were identified
from publicly accessible vulnerability databases [9, 10].

The vulnerabilities used in our experiments are provided in
Table 1. Half of these vulnerabilities (11 vulnerabilities) result in
crashes, exceptions, or timeouts. The other 11 vulnerabilities do
result in non-crashing behaviors. For example, two vulnerabilities
from Apache HttpClient manifest as incorrect functional behavior
(e.g. constructing a URI with an incorrect hostname).

For each vulnerability, we identified the vulnerable library func-
tion and a vulnerability-witnessing test case throughmanual anal-

ysis. Next, we manually identified up to two vulnerable, real client
projects for each library vulnerability. For the 22 vulnerabilities, we
investigated a total of 64 client projects with source code available
on GitHub. From 64 client projects, we obtained 42 pairs of (vulner-
ability, client program) where the client program is able to trigger
the library vulnerability. In the other 24 cases, we2 confirmed that
the client programs are unable to trigger the vulnerability despite
calling the vulnerable function, using this to validate that Trans-
fer does not generate test cases unnecessarily. All pairs that we
investigated are provided on the project website3.

While Siege was evaluated on 11 vulnerabilities by Iannone et
al. [40], the experiments involved only toy client programs that
were written by hand. As such, the client programs may not reflect
actual usage of the libraries. We do not use handwritten experimen-
tal programs in our experiments. Instead, we use realistic client
programs from open-source repositories on GitHub.

2The first and second authors manually investigated the client projects.
3https://github.com/soarsmu/transfer

Vulnerabilities may depend on many conditions to be triggered,
including environmental factors such as software configuration.
These environmental factors differ between vulnerabilities. In our
experiments, we do not model environmental factors (e.g. specific
configurations of the library or client project) or global variables,
although it is possible to expand a vulnerability’s triggering condi-
tions to account for them.

Baselines. As baseline, we compare Transfer to Siege [40].
Siege is a test generator that targets a single vulnerable line of code
given as input. We use the code provided in the replication package
of Siege. To use Siege in our experiments, we identified a line of
code for each vulnerability. In the ablation study, after removing
both types of goals from Transfer, we compare Transfer against
EvoSuite, which optimizes for code coverage in the client program.

Experimental setup. We ran Transfer and Siege for up to 10
minutes. In studies related to test generation, experimental dura-
tions range from a few minutes [18, 29, 59, 63] to several days [37].
We selected 10 minutes for the same experimental duration as stud-
ies on crash reproduction [63]. Our experiments were run on a
machine with 2.3 GHz Dual-Core Intel Core i5 with 8GB of RAM.

To mitigate the effect of randomness, we repeat each run 20
times. We consider that a vulnerability is shown to be exploitable
from a client program if a tool (i.e., Transfer or Siege) is able to
construct an exploit at least 50% of the time, similar to previous
studies on crash reproduction [63].

A true positive (“TP”) is the successful generation of a test case
for the client program that triggers the library’s vulnerability. A
false negative (“FN”) is the failure to generate a test case triggering
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Table 2: Number of true positives, false negatives, and pro-

portion of vulnerabilities detected by Transfer, Transfer

without directed test generation, Transfer without the trig-

gering conditions, and a baseline EvoSuite.

Approach # TP # FN % detected

TRANSFER 23 19 55%
− directed generation 20 22 48%
− triggering conditions 4 38 10%
− both (EvoSuite) 4 38 10%

the library’s vulnerability when the vulnerability can be triggered.
To determine if a test case triggers the vulnerability, we manually
inspected and ran them to check that they indeed recreated the
conditions that triggers the vulnerabilities. We compute the pro-
portion of vulnerable client programs for which Transfer/Siege
successfully generates an exploit.

4.2 Experimental Results

4.2.1 RQ1. Efficacy of Transfer. The client projects and vulner-
abilities detected by Transfer are given in Table 1. Transfer
confirmed the exploitability of the library’s vulnerability in 55%
(23 / 42) of the client programs. In contrast, Siege [40] was only
able to construct an exploit for 5 client projects (12% of the total
vulnerable client programs). Transfer outperforms Siege in 13
cases. This shows that Transfer can generate exploits for client
programs, outperforming the state-of-the-art test generator by a
large margin (over 40% increase in number of generated exploits).

Among the client programs where Transfer succeeded in gen-
erating an exploit, Transfer required an average of 27 generations,
and took an average of 41 seconds to produce an exploit. This
suggests that Transfer could quickly construct exploits for the
vulnerabilities in our experiments.

A desirable quality of Transfer is the absence of false alarms.
Therefore, Transfer should not produce a test case when the vul-
nerability cannot be exploited. Among the 24 cases where the client
programs are unable to trigger the vulnerability, we found that
Transfer exhibited the correct behavior by not producing test
cases. Note that the call graphs computed for these pairs indicate
that the vulnerable function could be invoked from the client pro-
grams, suggesting that existing call graph-based detectors would
incorrectly report false alarms.

Among the total of 17 libraries considered, Transfer is able to
trigger the vulnerabilities in 14 libraries. Of the 22 vulnerabilities,
11 are not crash-related and Transfer detects 7 of these 11 vulner-
abilities. This indicates that Transfer is able to detect non-crash
vulnerabilities. As for the other 11 vulnerabilities with exceptions,
crashes, or timeouts, Transfer detects 7 of them, suggesting that
Transfer is effective for both crash and non-crash vulnerabilities.

Answer to RQ1: Transfer is able to generate exploits for vul-
nerabilities for 14 libraries, producing 23 exploits for 64 client
programs. The baseline Siegewas only able to generate 5 exploits.

4.2.2 RQ2. Ablation Study. Next, we performed an ablation study
on Transfer by disabling the search goals accordingly. Table 2
shows the results of this experiment.

Table 3: The average number of generations required (num-

ber of seconds given in parentheses) for Transfer to find an

exploit, with and without the use of the line coverage goals

that direct test generation towards code on the call graph

between the client program and the vulnerable function.

Vulnerability Transfer −directed test generation

CODEC-134 34 (21s) 20 (15s)
CVE-2020-13956 26 (41s) 58 (50s)
CVE-2021-23899 2 (20s) 6 (108s)
CVE-2019-12402 7 (11s) 343 (328s)

Without the primary goal of the triggering conditions, Transfer
created exploits of only 3 vulnerabilities from the client programs.
In this setting, Transfer is equivalent to EvoSuite if EvoSuite
considers only the line and branch coverage goals of the path along
the call graph and the vulnerable function are provided. The de-
crease in effectiveness shows that the triggering conditions are
essential. Without them, Transfer is unable to select a test case
that confirms that the vulnerability is exploitable.

By dropping the line coverage goals that direct test generation
towards the vulnerable library function, Transfer is unable to
trigger the vulnerability in 3 cases (CVE-2020-28052, CVE-2020-
13956, CVE-2019-10094). Without the line coverage goals, Transfer
had to generate a test case that reached the vulnerable function
through completely random mutations. As such, the generated test
cases are less likely to invoke the vulnerable function.

Table 3 shows the four cases where we observed that directed
test generation substantially changed the number of generations
required for Transfer to discover an exploit. For the other cases,
we did not notice a significant change in the number of generations
required. In 3 of 4 cases, the line coverage goals allowed Transfer
to discover the exploit in a smaller number of generations. However,
in one case (CODEC-134), the line coverage goals slowed down the
search. In the other 16 cases, Transfer performed similarly with
or without the line coverage goals.

Along with the 3 cases where Transfer could not reveal the
vulnerability in the client programs, there are a total of 7 cases (41%
of the 17 cases where Transfer could detect the vulnerability in
the client program) where the line coverage goals increased the
effectiveness of Transfer. Therefore, we see that the line coverage
goals were important, although not essential, in our experiments.

Answer to RQ2:While test generation directed by line coverage
helped, guiding test generation to satisfy the triggering condi-
tions extracted from the carved program state was essential to
Transfer.

5 DISCUSSION

We qualitatively analyse our results to better understand the per-
formance of Transfer and discuss threats to validity.

5.1 Qualitative Analysis

5.1.1 Why did TransferWork?

Generating complex inputs. Both Transfer and Siege direct
test generation towards the vulnerable library code. However, there
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arg1.getRawAuthority ()==
"blah@goggle.com:80 @google.com"

&& arg1.getScheme () == "http"
&& arg1.getRawPath () == "/"
...

Figure 6: Part of the triggering conditions identified for CVE-

2020-13956

are 18 client programs where Siege was not able to uncover the
library vulnerability while Transfer was able to. Our ablation
study reveals that capturing the triggering conditions of the vul-
nerabilities was the key to Transfer’s effectiveness. Indeed, many
vulnerabilities are corner cases and exceptional behaviors of the
software system, and Transfer targets the triggering conditions,
which provides better guidance for uncovering the vulnerability.

As an example, we use CVE-2020-13956 from Section 2.3, a simpli-
fied version of the triggering conditions captured from the library’s
test case is shown in Figure 6. The vulnerability manifests when
an invalid URL (e.g. “blah@goggle.com:80@google.com”) is passed
into the vulnerable function, and causes a connection to an unex-
pected host. Neither EvoSuite nor Siege account for the necessary
inputs and program state for the exploit. EvoSuite aims to covers
all other behaviors, while Transfer targets a single behavior en-
capsulated by the triggering conditions, 𝜎 . Siege has to construct
an invalid URL from scratch, while Transfer leverages the input
from the library’s test case.

Guidance from triggering conditions. In Table 2, Transfer
using only directed test generation without the triggering condi-
tions performs identically to EvoSuite. Given that only one class
is targeted, the search budget of 10 minutes may have provided
enough time for EvoSuite to cover the same code locations that
Transfer was directed to. This indicates that the improvements of
Transfer over EvoSuite observed in our experiments stem from
the use of the triggering conditions.

Compared to Siege, Transfer and Siege fundamentally differ
in how they guide the test generator. Siege checks for the coverage
of a vulnerable line of code in the library, while Transfer checks if
program state reached by the library test case has been reproduced.
In 7 vulnerabilities in our experiments, both benign and malicious
inputs would cover the same lines of code, and, hence, Siege does
not succeed in creating an exploit. In these cases, guiding the test
generator by code coverage may not be enough for producing an
exploit.

5.1.2 Complementary to Existing Tools. We suggest test mimicry
is complementary to existing, call graph-based techniques [32, 58].
Call graph-based techniques produce false positives, which may
lead to low adoption [41, 45]. If Transfer succeeds in demonstrat-
ing that a vulnerability can be exploited, then developer effort can
be reduced. However, if Transfer fails in generating a test case, it
does not mean that the vulnerability is not exploitable, and devel-
opers will have to expend effort in investigating the vulnerability.

Test mimicry relies on a test case from the library. While the test
case demonstrates the vulnerability, the extracted triggering condi-
tions, 𝜎 , do not characterize all possible triggers of the vulnerability.

For example, the test case of CVE-2020-13956 (Figure 6) shows
one possible URL out of many that could trigger the vulnerability.
Nevertheless, as our goal is to demonstrate that the vulnerability
may be exploited from a client program, having a single example
may suffice to guide the creation of a test case demonstrating the
vulnerability’s exploitability.

5.1.3 Next Steps. While Transfer was successful in a number
of cases in our evaluation, we identified some limitations to be
addressed in future work.

Dependence on inspector functions. In TwelveMonkeys-595,
Transfer is unable to produce a test case as the arguments to the
vulnerable function lacked inspector functions. Transfer could
not extract triggering conditions that capture the program state. In
the future, we plan to additionally use other means of extracting
vulnerability-triggering conditions beyond the use of inspectors.

Irrelevant program states. In Figure 6, the triggering condi-
tions captured aspects that were irrelevant to triggering the vul-
nerability (e.g. getScheme() == “http”) along with the the neces-
sary aspects (having getRawAuthority() set to an invalid URL,
“blah@goggle.com:80@google.com”). In other words, the triggering
conditions captured by Transfer are more specific than the actual
conditions required to trigger the vulnerability. While Transfer
is able to construct a test case that satisfies the triggering condi-
tions in Figure 6, including its irrelevant aspects, we found that in
other cases, Transfer may have been limited by its inability to
satisfy the irrelevant aspects of the captured triggering conditions.
In the future, we will explore techniques from the area of test input
minimization for the extracted triggering conditions.

5.2 Threats to Validity

A threat to validity is the manual selection of vulnerabilities in
our experiments. While the type of library test case is not a limi-
tation of our approach, we selected vulnerabilities with test cases
that target only the vulnerable behavior (i.e., the test case does
not exercise unrelated behaviors of the vulnerable code location).
Otherwise, Transfer has no way to correctly identify the right
behavior associated with the vulnerability.

Our experiments focused on the effectiveness of the test mimicry
technique. As such, we focused on evaluating the design decisions
unique to Transfer and used the default parameters of EvoSuite.
If we fine-tune the parameters of the search parameters, Trans-
fer may perform better in our experiments and we leave these
experiments for future work. Likewise, we used the DynaMOSA
search algorithm as it has been shown to outperform other search
algorithms in generating test cases [21, 54].

Regarding the generalizability of our findings, we selected vul-
nerabilities that range across multiple domains for our experiments.
Table 4 shows the number of successfully generated test cases for
the domains of libraries considered in our experiments. As our
experiments covered various domains, we believe our approach is
not limited to specific domains and we expect it to generalize to
domains beyond our evaluation. Still, it is possible that it will not
work on some domains that we have not identified yet. Compared
to the benchmark of Iannone et al. [40], our benchmark is larger
and uses realistic client programs instead of toy programs.
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Table 4: The domains of the libraries considered and the number of generated exploits in our experiments.

Domain Libraries # exploits

File compression Zip4J, Commons Compress, Junrar 5
Serialization/deserialization XStream, Json-smart, jackson, dom4j 6
Web development/utilities Spring, Hibernate ORM, Apache HttpComponents 4
Data encoding/cryptography Bouncy castle, Apache Codecs, Apache POI 4
File formats (PDFs, images) Apache Tika, Twelvemonkey 1
Test Framework JUnit 1

6 RELATEDWORK

Software Composition Analysis and Search-based Test Generation
are discussed in Section 2. Here, we discuss other related works.

Automated Exploit Generation. Our work is related to the
field of Automated Exploit Generation [15, 22], with the same goal
of producing exploits for known vulnerabilities. Brumley et al. [19]
have shown the possibility of generating exploits based on the patch
fixing the vulnerability. While our work relies on information in a
patch, we demonstrate that the test case accompanying the bug fix
can be used to generate exploits, while prior work used only the
modified code. Moreover, Brumley et al. [19] only creates exploits
of vulnerabilities associated with missing input validation.

Other studies that automatically generate exploits study spe-
cific types of vulnerabilities for a narrow range of software sys-
tems [25, 36, 39, 67–69]. For example, Chen et al. [25] generate
exploits for vulnerabilities caused by out-of-bounds writes, generat-
ing 11 exploits. You et al. [69] proposes the use of natural language
processing to extract information to guide fuzzing, triggering 18
vulnerabilities in the Linux kernel. In contrast, Transfer construct
test cases for a wide range of vulnerabilities for Java programs.

Test input generation. There is a large amount of work on test
input generation [1, 17, 18, 24, 34, 37, 38, 42, 47, 49, 53, 64]. These
studies use fuzzing or symbolic execution, focus on maximizing
coverage [1, 18, 24, 34, 53], or finding vulnerabilities with oracles
such as crashes or poor performance [47, 48, 57]. Compared to these
studies, apart from generating test inputs (e.g. a string), Transfer
constructs the sequence of different function calls (e.g. constructors,
setter functions) that set up the object states necessary to trigger
the vulnerability. Provided with a vulnerability-witnessing test case,
Transfer focuses on demonstrating a single, vulnerable behavior
and is able to detect vulnerabilities that do not manifest as crashes.

Directed fuzzing [17, 23, 66] focuses fuzzing efforts on selected
code locations. Similarly, Transfer directs test generation towards
the vulnerable code location. However, beyond reaching the same
code locations, Transfer focuses on reproducing the program state
reached in a library test case to check if a library vulnerability can
be exploited from a client program.

Crash reproduction. Botsing [29] is an approach that uses
search-based test generation to reproduce crashes given stacktraces.
Botsing is complementary to our approach in detecting vulnerabili-
ties that result in crashes. However, not all vulnerabilities manifest
as exceptions and Botsing cannot be used without a stacktrace. As
such, we do not use Botsing in our experiments as just 4 out of the
22 studied vulnerabilities result in exceptions.

Reusing test cases. Researchers have proposed techniques that
reuses existing test cases from other projects [70]. Given similar but

not identical programs, Zhang and Kim [70] try to reuse existing
test cases to enable behavioral comparison between the programs.
Our work is similar in reusing properties of an existing test case
in a different software system, but we focus on generating tests
for client programs rather than similar programs. While Mujahid
et al. [52] proposes the use of client test cases to detect breaking
changes in libraries, our work proposes the use of library test cases
to detect the exploitability of library vulnerabilities from client
programs.

7 CONCLUSION AND FUTUREWORK

We propose test mimicry to leverage vulnerability-witnessing test
cases from open-source libraries, generating test cases for client
projects that demonstrate the exploitability of the library vulnera-
bilities. Our tool, Transfer, captures the program states reached by
the library test cases, directing test case generation for client pro-
grams towards reconstructing them. Transfer generates 4x more
exploits for real client programs than the state-of-the-art approach.

In the future, we will explore more expressive conditions to
represent the program state, including incorporating facts about the
environment (e.g. project configuration). We also wish to explore
techniques to minimize the triggering conditions to remove aspects
irrelevant to the vulnerability.
Acknowledgement. This project is supported by the National Re-
search Foundation, Singapore and National University of Singapore
through its National Satellite of Excellence in Trustworthy Software
Systems (NSOE-TSS) office under the Trustworthy Computing for
Secure Smart Nation Grant (TCSSNG) award no. NSOE-TSS2020-02,
and the Australian Government through the Australian Research
Council’s Discovery Early Career Researcher Award, project num-
ber DE220101057. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and
do not reflect the views of National Research Foundation, Singapore
and National University of Singapore (including its National Satel-
lite of Excellence in Trustworthy Software Systems (NSOE-TSS)
office).

REFERENCES

[1] [n.d.]. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/technical_details.txt.
[2] [n.d.]. CODEC-134 from Apache Commons Codecs’s issue tracker. https://

issues.apache.org/jira/browse/CODEC-134.
[3] [n.d.]. CVE-2019-12402. https://nvd.nist.gov/vuln/detail/CVE-2019-12402.
[4] [n.d.]. Google Security Blog: Understanding the Impact of Apache Log4j Vul-

nerability. https://security.googleblog.com/2021/12/understanding-impact-of-
apache-log4j.html.

[5] [n.d.]. SNYK-JAVA-COMTWELVEMONKEYSIMAGEIO-1083830 from SNYK.
https://snyk.io/vuln/SNYK-JAVA-COMTWELVEMONKEYSIMAGEIO-1083830.

[6] [n.d.]. SNYK-JAVA-NETLINGALAZIP4J-1074967 from SNYK. https://snyk.io/
vuln/SNYK-JAVA-NETLINGALAZIP4J-1074967.

286

https://issues.apache.org/jira/browse/CODEC-134
https://issues.apache.org/jira/browse/CODEC-134
https://nvd.nist.gov/vuln/detail/CVE-2019-12402
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://snyk.io/vuln/SNYK-JAVA-COMTWELVEMONKEYSIMAGEIO-1083830
https://snyk.io/vuln/SNYK-JAVA-NETLINGALAZIP4J-1074967
https://snyk.io/vuln/SNYK-JAVA-NETLINGALAZIP4J-1074967


ISSTA ’22, July 18–22, 2022, Virtual, South Korea Hong Jin Kang, Truong Giang Nguyen, Bach Le, Corina S. Păsăreanu, and David Lo

[7] [n.d.]. SNYK-JAVA-ORGAPACHEHTTPCOMPONENTS-31517 from SNYK. https:
//snyk.io/vuln/SNYK-JAVA-ORGAPACHEHTTPCOMPONENTS-31517.

[8] [n.d.]. SNYK-JAVA-ORGSPRINGFRAMEWORKSECURITY-570204 from SNYK.
https://snyk.io/vuln/SNYK-JAVA-ORGSPRINGFRAMEWORKSECURITY-
570204.

[9] [n.d.]. Snyk’s vulnerability database. https://snyk.io/vuln?type=maven.
[10] [n.d.]. SourceClear’s vulnerability database. https://www.sourceclear.com/

vulnerability-database/.
[11] [n.d.]. Wired: The Log4J Vulnerability Will Haunt the Internet for Years. https:

//www.wired.com/story/log4j-log4shell/.
[12] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-

felds. 2017. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE, 263–272.
https://doi.org/10.1109/ICSE-SEIP.2017.27

[13] Andrea Arcuri. 2013. It really does matter how you normalize the branch distance
in search-based software testing. Software Testing, Verification and Reliability 23,
2 (2013), 119–147. https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.457

[14] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An
empirical investigation in search-based software engineering. Empirical Software
Engineering 18, 3 (2013), 594–623. https://doi.org/10.1007/s10664-013-9249-9

[15] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM 57, 2 (2014), 74–84. https://doi.org/10.1145/2560217.2560219

[16] Kent Beck. 2003. Test-driven development: by example. Addison-Wesley Profes-
sional.

[17] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. InACM SIGSACConference on Computer and Com-
munications Security (CCS). 2329–2344. https://doi.org/10.1145/3133956.3134020

[18] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-
based greybox fuzzing as Markov Chain. IEEE Transactions on Software Engineer-
ing (TSE) 45, 5 (2017), 489–506. https://doi.org/10.1109/TSE.2017.2785841

[19] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Au-
tomatic patch-based exploit generation is possible: Techniques and implica-
tions. In IEEE Symposium on Security and Privacy (S&P). IEEE, 143–157. https:
//doi.org/10.1109/SP.2008.17

[20] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002).

[21] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. 2018. An empirical evaluation of evolutionary algorithms for unit test
suite generation. Information and Software Technology (IST) 104 (2018), 207–235.
https://doi.org/10.1016/j.infsof .2018.08.010

[22] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on binary code. In IEEE Symposium on Security and Privacy
(S&P). IEEE, 380–394. https://doi.org/10.1109/SP.2012.31

[23] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng
Wu, and Yang Liu. 2018. Hawkeye: Towards a desired directed grey-box fuzzer.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
2095–2108. https://doi.org/10.1145/3243734.3243849

[24] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In IEEE Symposium on Security and Privacy (S&P). IEEE, 711–725. https://doi.org/
10.1109/SP.2018.00046

[25] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. 2020. KOOBE:
Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write Vulner-
abilities. In USENIX Security Symposium (USENIX Security). 1093–1110. https:
//www.usenix.org/conference/usenixsecurity20/presentation/chen-weiteng

[26] Yang Chen, Andrew E Santosa, Ang Ming Yi, Abhishek Sharma, Asankhaya
Sharma, and David Lo. 2020. A Machine Learning Approach for Vulnerability
Curation. In International Conference onMining Software Repositories (MSR). 32–42.
https://doi.org/10.1145/3379597.3387461

[27] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, and Andreas Zeller.
2006. Mining object behavior with ADABU. In Proceedings of the 2006 international
workshop on Dynamic systems analysis. 17–24. https://dl.acm.org/doi/10.1145/
1138912.1138918

[28] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In International
Conference on Mining Software Repositories (MSR). 181–191. https://doi.org/
10.1145/3196398.3196401

[29] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and
Arie van Deursen. 2020. Botsing, a Search-based Crash Reproduction Framework
for Java. In IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1278–1282. https://doi.org/10.1145/3324884.3415299

[30] Xavier Devroey, Sebastiano Panichella, andAlessio Gambi. 2020. Java Unit Testing
Tool Competition: Eighth Round. In IEEE/ACM International Conference on Soft-
ware Engineering Workshops. 545–548. https://doi.org/10.1145/3387940.3392265

[31] Sebastian Elbaum, Hui Nee Chin, Matthew B Dwyer, and Jonathan Dokulil. 2006.
Carving differential unit test cases from system test cases. In ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE). 253–264.
https://doi.org/10.1145/1181775.1181806

[32] Darius Foo, Jason Yeo, Hao Xiao, and Asankhaya Sharma. 2019. The dynamics
of Software Composition Analysis. Automated Software Engineering (ASE) (Late
Breaking Results) (2019). http://arxiv.org/abs/1909.00973

[33] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In ACM SIGSOFT Symposium and the European
Conference on Foundations of Software Engineering (FSE). 416–419. https://doi.org/
10.1145/2025113.2025179

[34] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path sensitive fuzzing. In IEEE Symposium on
Security and Privacy (S&P). IEEE, 679–696. https://doi.org/10.1109/SP.2018.00040

[35] David Grove and Craig Chambers. 2001. A framework for call graph construction
algorithms. ACM Transactions on Programming Languages and Systems (TOPLAS)
23, 6 (2001), 685–746. https://doi.org/10.1145/506315.506316

[36] Sean Heelan, Tom Melham, and Daniel Kroening. 2019. Gollum: Modular and
greybox exploit generation for heap overflows in interpreters. In ACM SIGSAC
Conference on Computer and Communications Security (CCS). 1689–1706. https:
//doi.org/10.1145/3319535.3354224

[37] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with
code fragments. In USENIX Security Symposium (USENIX Security). 445–
458. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/holler

[38] Matthias Hoschele and Andreas Zeller. 2017. Mining input grammars with
AUTOGRAM. In IEEE/ACM International Conference on Software Engineering
Companion (ICSE-C). IEEE, 31–34. https://doi.org/10.1109/ICSE-C.2017.14

[39] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic generation of data-oriented exploits. In USENIX Security
Symposium (USENIX Security). 177–192. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/hu

[40] Emanuele Iannone, Dario Di Nucci, Antonino Sabetta, and Andrea De Lucia.
2021. Toward Automated Exploit Generation for Known Vulnerabilities in Open-
Source Libraries. In IEEE/ACM International Conference on Program Comprehen-
sion (ICPC). IEEE, 396–400. https://doi.org/10.1109/ICPC52881.2021.00046

[41] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
IEEE/ACM International Conference on Software Engineering (ICSE). IEEE, 672–681.
https://doi.org/10.1109/ICSE.2013.6606613

[42] Alexander Kampmann, Nikolas Havrikov, Ezekiel O Soremekun, and Andreas
Zeller. 2020. When does my program do this? learning circumstances of software
behavior. In ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 1228–1239.
https://doi.org/10.1145/3368089.3409687

[43] Pavneet Singh Kochhar, Tegawendé F Bissyandé, David Lo, and Lingxiao Jiang.
2013. Adoption of software testing in open source projects–A preliminary study
on 50,000 projects. In 2013 European Conference on Software Maintenance and
Reengineering (CSMR). IEEE, 353–356. https://doi.org/10.1109/CSMR.2013.48

[44] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code coverage
and test suite effectiveness: Empirical study with real bugs in large systems. In
IEEE International conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 560–564. https://doi.org/10.1109/SANER.2015.7081877

[45] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In International Symposium on
Software Testing and Analysis. 165–176. https://doi.org/10.1145/2931037.2931051

[46] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical Software
Engineering 23, 1 (2018), 384–417. https://doi.org/10.1007/s10664-017-9521-5

[47] Xuan-Bach D Le, Corina Pasareanu, Rohan Padhye, David Lo, Willem Visser,
and Koushik Sen. 2019. SAFFRON: Adaptive grammar-based fuzzing for worst-
case analysis. ACM SIGSOFT Software Engineering Notes 44, 4 (2019), 14–14.
https://doi.org/10.1145/3364452.3364455

[48] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically generating pathological inputs. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). 254–265. https://doi.org/
10.1145/3213846.3213874

[49] Björn Mathis, Rahul Gopinath, and Andreas Zeller. 2020. Learning input tokens
for effective fuzzing. In ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). 27–37. https://doi.org/10.1145/3395363.3397348

[50] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156. https://doi.org/10.1002/
stvr.294

[51] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests en-
courage software developers to upgrade out-of-date dependencies?. In IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 84–94.
https://doi.org/10.1109/ASE.2017.8115621

[52] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. 2020.
Using Others’ Tests to Identify Breaking Updates. In International Confer-
ence on Mining Software Repositories (MSR). 466–476. https://doi.org/10.1145/

287

https://snyk.io/vuln/SNYK-JAVA-ORGAPACHEHTTPCOMPONENTS-31517
https://snyk.io/vuln/SNYK-JAVA-ORGAPACHEHTTPCOMPONENTS-31517
https://snyk.io/vuln/SNYK-JAVA-ORGSPRINGFRAMEWORKSECURITY-570204
https://snyk.io/vuln/SNYK-JAVA-ORGSPRINGFRAMEWORKSECURITY-570204
https://snyk.io/vuln?type=maven
https://www.sourceclear.com/vulnerability-database/
https://www.sourceclear.com/vulnerability-database/
https://www.wired.com/story/log4j-log4shell/
https://www.wired.com/story/log4j-log4shell/
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.457
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1145/2560217.2560219
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1016/j.infsof.2018.08.010
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-weiteng
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-weiteng
https://doi.org/10.1145/3379597.3387461
https://dl.acm.org/doi/10.1145/1138912.1138918
https://dl.acm.org/doi/10.1145/1138912.1138918
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3324884.3415299
https://doi.org/10.1145/3387940.3392265
https://doi.org/10.1145/1181775.1181806
http://arxiv.org/abs/1909.00973
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1145/506315.506316
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/3319535.3354224
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1109/ICSE-C.2017.14
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://doi.org/10.1109/ICPC52881.2021.00046
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/3368089.3409687
https://doi.org/10.1109/CSMR.2013.48
https://doi.org/10.1109/SANER.2015.7081877
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/3364452.3364455
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3395363.3397348
https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/stvr.294
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1145/3379597.3387476
https://doi.org/10.1145/3379597.3387476


Test Mimicry to Assess the Exploitability of Library Vulnerabilities ISSTA ’22, July 18–22, 2022, Virtual, South Korea

3379597.3387476
[53] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves

Le Traon. 2019. Semantic fuzzing with Zest. In ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). 329–340. https://doi.org/
10.1145/3293882.3330576

[54] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2017. Au-
tomated test case generation as a many-objective optimisation problem with
dynamic selection of the targets. IEEE Transactions on Software Engineering (TSE)
44, 2 (2017), 122–158. https://doi.org/10.1109/TSE.2017.2663435

[55] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2018. Vulnerable open source dependencies: Counting those that
matter. In ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 1–10. https://doi.org/10.1145/3239235.3268920

[56] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2020. Vuln4real: A methodology for counting actually vulnerable
dependencies. IEEE Transactions on Software Engineering (TSE) (2020). https:
//ieeexplore.ieee.org/abstract/document/9201023/

[57] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2155–2168. https://doi.org/10.1145/3133956.3134073

[58] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2018. Beyond metadata:
Code-centric and usage-based analysis of known vulnerabilities in open-source
software. In IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 449–460. https://doi.org/10.1109/ICSME.2018.00054

[59] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. 2020. Quickly
generating diverse valid test inputs with Reinforcement Learning. In IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE, 1410–1421. https:
//doi.org/10.1145/3377811.3380399

[60] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding strategies in
search-based unit test generation. Software Testing, Verification and Reliability
26, 5 (2016), 366–401. https://doi.org/10.1002/stvr.1601

[61] Atanas Rountev, Scott Kagan, and Michael Gibas. 2004. Static and dynamic anal-
ysis of call chains in Java. In ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). 1–11. https://doi.org/10.1145/1007512.1007514

[62] Antonino Sabetta and Michele Bezzi. 2018. A practical approach to the automatic
classification of security-relevant commits. In IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 579–582. https://doi.org/
10.1109/ICSME.2018.00058

[63] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. 2018. Search-
based crash reproduction and its impact on debugging. IEEE Transactions on
Software Engineering (TSE) 46, 12 (2018), 1294–1317. https://doi.org/10.1109/
TSE.2018.2877664
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