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Abstract—Many modern software systems are enabled by deep learning libraries such as TensorFlow and PyTorch. The reliability of
deep learning libraries is therefore a key concern. For finding crashing inputs to the libraries, the libraries can be tested using the inputs
already present in their test suite, but randomly selected inputs are unlikely to uncover bugs. Existing approaches propose strategies to
select only valid inputs. However, they do not have methods to explore enough of the input domain. Moreover, to efficiently trigger
buggy behavior, a fuzzer should decrease redundancy by selecting inputs that less likely to trigger the same behavior as previously
used inputs.
We propose SKIPFUZZ, a new approach for fuzzing deep learning libraries. SKIPFUZZ systematically selects inputs to explore the
library’s input domain and uses fewer redundant inputs. SKIPFUZZ refines its model of the input constraints of each API function using
active learning over the information gathered during fuzzing. The input constraints are leveraged to guide input selection towards valid
inputs. To reduce redundancy, SKIPFUZZ maintains categories that group together inputs with common characteristics, e.g. they are
tensors of a certain shape. Inputs in one category are distinguished from other categories by the input constraints they would satisfy.
Inputs from different categories are used to invoke the library to check if they satisfy a function’s input constraints. Our experiments
indicate that SKIPFUZZ generates more crashing inputs than prior approaches. SKIPFUZZ found 53 crashes, of which 28 were
confirmed to be previously unknown. The rest were already known but not fixed yet. 23 unique CVEs were assigned.

Index Terms—Fuzzing, Deep Learning Libraries, Active Learning, Input Selection
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1 INTRODUCTION

Deep learning is now prevalent, including in safety and
security-critical domains. As such, there have been increas-
ing concerns about vulnerabilities in deep learning systems,
which can have a severe impact. These vulnerabilities may
be exploited, including for denial-of-service attacks on deep
learning applications. The development of approaches that
effectively fuzz deep learning libraries, such as TensorFlow
and PyTorch, is crucial.

Challenges. Fuzzing deep learning libraries is difficult
due to the problem of selecting suitable inputs. The space of
inputs is very large. Selecting appropriate inputs is, there-
fore, challenging. The first challenge is that the majority of
randomly selected inputs would be invalid and are rejected
by validation checks in the library. Thus, fuzzers should
avoid generating inputs that execute only the library’s val-
idation checks. Prior approaches [11], [40], [41] developed
strategies for identifying and selecting valid inputs from a
set of seed inputs. However, this may have an unintended
effect of narrowing down the input space too quickly, and
cause the fuzzers to miss inputs that could be invalid but
could crash the library. This calls for approaches that do
not overlook and can select inputs that are invalid, but
sufficiently resemble valid inputs to pass the libraries’ input
validation checks. The second challenge is that inputs may
be redundant, and thus not useful for uncovering new bugs.
The selection of similar inputs would test the same library
behavior, leading to wasted effort in fuzzing. This calls
for approaches that avoid inputs that may test the same
behavior. Given the observations of prior test outcomes (e.g.,

an InvalidArgumentError exception thrown given a float
tensor), a fuzzer should select inputs (e.g., an int tensor) to
test behaviors that are different from the already observed
test outcome.

Existing approaches. Off-the-shelf fuzzers, such as
AFL [1], do not encode knowledge of input constraints, and
fail to generate valid inputs. Other existing works propose
methods to select valid test inputs. DocTer [41] infers the
input constraints from API documentation, then fuzzes the
library based on the inferred constraints. FreeFuzz [40]
mines valid inputs of functions from open source code.
DeepRel [11], building on FreeFuzz, identifies pairs of sim-
ilar functions for sharing valid inputs. DocTer and DeepRel
rely on API documentation, which may not always be avail-
able or well-maintained. All of the approaches above have
a goal of selecting valid inputs but do not have strategies
of avoiding redundant inputs, which causes them to miss
some crashing inputs.

Our approach. In this paper, we propose an approach
(embodied in a tool), SKIPFUZZ, that selects inputs for infer-
ring a model of the input constraints of each function during
fuzzing. SKIPFUZZ does not require existing specifications.
Instead, it learns the input constraints automatically during
fuzzing. SKIPFUZZ uses the hypothesis that inputs shar-
ing the same domain-specific properties lead to the same
outcomes. To infer the constraints, SKIPFUZZ has to select
inputs that are not redundant (otherwise, it gains no addi-
tional information), and systematically explore the space of
inputs (identifying an input constraint requires SKIPFUZZ
to check both valid and invalid inputs). SKIPFUZZ employs
active learning, which learns by interactively querying an
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oracle. The active learner queries the test executor with
inputs that satisfy different possible input constraints. In
SKIPFUZZ, the test executor takes the role of the oracle;
based on the queries, it constructs test cases using inputs.
The test outcomes (indicating if the input is valid, invalid,
or crashing) are provided back to the active learner, which
refines its model of the input constraints. Once inferred, the
input constraints enable the selection of valid inputs.

Specifically, SKIPFUZZ distinguishes test inputs by a set
of input properties, whose design is inspired by the input
constraints and root causes of bugs identified in prior stud-
ies analyzing deep learning libraries [20], [21], [22], [41].
SKIPFUZZ reduces redundancy by assuming that inputs
with the same properties would satisfy the same input
constraints; if an input fails a validation check, then other
inputs with the same properties will fail the same check.
With this assumption, SKIPFUZZ avoids the selection of
inputs that it can already determine to lead to the same
outcome. The input properties differentiate inputs by their
structure, types, shapes, and values, corresponding to the
possible input constraints. Selecting inputs with different
properties allows for reduced input redundancy and may
provide new information about the input constraints.

The active learner identifies a hypothesis for the input
constraints that is consistent with the observed outcomes.
A consistent hypothesis is one where the behavior of the
program under the hypothesis matches that of the actual
program [9]. Given the observations of the test outcomes
indicating if each input was valid or invalid, an ideal hy-
pothesis is a set of properties that matches all valid inputs
but excludes all invalid inputs. SKIPFUZZ quantitatively
assesses the consistency between a hypothesis and the ob-
served test outcomes by measuring the overlap between
the expected outcomes given the hypothesis against the
observed outcomes. After finding an adequately consistent
hypothesis, SKIPFUZZ selects only inputs satisfying it, en-
abling a high proportion of valid selected inputs.

In our experiments, SKIPFUZZ detects crashes in 108
functions in TensorFlow and 58 functions in PyTorch. After
grouping the crashes with similar root causes, the new
crashes have been reported to the libraries. 23 TensorFlow
vulnerabilities and 6 PyTorch bug reports have been fixed.
SKIPFUZZ can trigger up to 63% of the crashes found by the
prior approaches, DocTer and DeepRel, while the majority
of the crashes found by SKIPFUZZ were not found by them.
After inferring an input constraint, SKIPFUZZ selects valid
inputs most of the time (>80%) of the time, indicating
that the inferred constraints are of good quality. Overall,
through the process of inferring a model of the input con-
straints, SKIPFUZZ finds more crashing inputs than prior
approaches.

We present the following contributions:

• To fuzz deep learning libraries, we leverage domain
knowledge of the libraries and categorize inputs using
properties corresponding to possible input constraints.
This enables input constraint inference.

• We implement SKIPFUZZ, which employs active learn-
ing for input constraint inference. In this process,
fuzzing is guided towards inputs that resemble valid
inputs, and reduces redundancy in fuzzing the libraries

TABLE 1: Glossary

Active Learning: An algorithm that learns by interactively
querying an oracle.

Consistency: The extent to which executions under the
inferred hypothesis matches the actual program.

Input constraints: The validation checks performed by
the library on its inputs.

Input properties: Predicates which describe inputs.
Input categories: Conjunction of input properties.
Hypothesis: A model of the input constraints as inferred

by SKIPFUZZ. A disjunction of the properties associated
with a set of input categories.

as it selects inputs to obtain information for refining its
model of the input constraints.

• In our experiments, SKIPFUZZ outperforms prior works
in finding crashes by generating fewer redundant in-
puts. From the new crashes found, 23 CVEs have been
assigned.

The rest of the paper is structured as follows. Section 2
discusses the background of our work. Section 3 presents
SKIPFUZZ. Section 4 describes its implementation details.
Section 5 analyzes the experimental results. Section 6 pro-
vides more discussion of our results and threats to validity.
Section 7 presents related work. Section 8 concludes the
paper and mentions future work.

2 PRELIMINARIES

2.1 Deep Learning Libraries
Deep learning libraries are employed by deep learning
systems. Library vulnerabilities widen the attack surface of
the software systems that depend on them [35]. They may,
for example, allow denial-of-service attacks on software
systems using them [5].

Input domain. Inputs to deep learning libraries includes
tensors and matrices. Library functions may impose input
constraints, for example, requiring tensors of a specific
size (e.g. a 3x3 matrix). Prior work categorized the input
constraints of the library functions by their structure (e.g., a
list), type (e.g., tensor with ‘float’ values), shape (e.g., a 2-d
tensor), and valid values (e.g., positive integers) [41].

Fuzzing. For effective fuzzing, a fuzzer should not se-
lect inputs that fail the input validation checks of library
functions (i.e., it should select inputs that are valid, or
resemble valid inputs) [27], [41]. To address this, DocTer [41]
exploits the libraries’ consistently structured documentation
to extract input constraints such that the functions can be
automatically invoked. DeepRel [11] and FreeFuzz [40] use
seed inputs collected from publicly available resource, in-
cluding the library developers’ test suites. FreeFuzz invokes
library functions for which a valid invocation was observed
from the resources. Building on FreeFuzz, DeepRel selects
valid inputs for functions without seed inputs to transfer
inputs from test cases between pairs of similar functions.
The existing approaches propose strategies for selecting
valid inputs, but may miss invalid inputs that lead to bugs
and do not have a method to reduce input redundancy.

2.2 Active Learning
We apply active learning for input constraint inference.
Table 1 presents a glossary of terms used in the active
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TABLE 2: Examples of input property templates. X refers
to the input. C1 and C2 refer to constant values, which will
be replaced with concrete values to instantiate a property.
SKIPFUZZ uses a total of 92 property templates, which can
be viewed on the artifact website [4].

Property Group Example Description
isinstance(X, type) type of the input

Type/Structure (e.g. a list).
X.dtype = type type (e.g. int) of

elements in a tensor.
X < C1 ranges of values.
all(X > C1) ranges of values

Value of elements in a
tensor/data structure.

X[C1] = C2 value of an element.
len(X) < C1 length/size of a data

structure.
Shape X.shape.rank > C1 rank of a matrix.

X.shape[C1] == C2 size of a specific
dimension.

learning phase of SKIPFUZZ. To infer and refine a model of
a library function’s input constraints, our approach selects
inputs that provide new information when they are used to
invoke a function.

In active learning [6], [7], a learner sends queries to an
oracle who responds with some feedback (e.g., the ground
truth label of a given data instance). When active learning is
employed for inferring a model of a program, a hypothesis is
a possible model. A hypothesis is consistent if the behavior
expected from the model matches the actual behavior of the
program.

Input constraint inference. Our approach, SKIPFUZZ,
uses active learning for inferring models of the input con-
straints of the functions in the deep learning libraries’ API.
Input constraints refer to the conditions on the inputs that
are expected to be fulfilled for the function to be successfully
invoked. Code in the library typically performs validation
checks on the inputs, ensuring that the constraints are
satisfied before executing the libraries’ core functionality.
SKIPFUZZ refines a hypothesis of the functions’ input con-
straints as its active learner component poses queries to
the test executor. The test executor determines the answers
to the queries by checking if an input with properties
corresponding to the query satisfies the input constraint
(i.e., if it is valid, invalid, crash) determined by observing
if the function invocation completes without error (valid),
rejects the input through an exception (invalid), or crashes
the program (crash). A crashing input causes the library to
terminate in an unclean manner (e.g. a segmentation fault
from an illegal memory access).

2.3 Categorizing inputs by their properties

SKIPFUZZ characterizes inputs to the deep learning libraries
by input properties. The properties, manually designed based
on the findings of prior work [41], are descriptions of inputs
for distinguishing them. Some examples of the property
templates are given in Table 2. From the templates, SKIP-
FUZZ synthesizes properties, including those considered in
the prior work [41].

Each input can satisfy multiple input properties. SKIP-
FUZZ characterizes each input with the properties that it

# generate inputs
input1 = tf.constant ([1, 2, 3])
shape = tf.constant(dtype=tf.qint8 ,

value=np.array ([1]))
# invoke the target function
tf.placeholder_with_default(input1 , shape)

Fig. 1: Example of a test case produced for
placeholder_with_default. Inputs for each argument
(e.g. shape) are selected.

satisfies. As a pre-processing step of fuzzing, SKIPFUZZ
groups inputs that satisfy the same properties into the same
input category. An input category is associated with the
inputs that satisfy a conjunction of properties.

We assume that the true input constraints of the function
correspond to a set of input categories, i.e., a collection of
properties describing valid inputs. For example, all inputs
in the category associated with { isinstance(X, Tensor),
X.shape = (2,2) } are tensors of the same shape and will
satisfy input constraints requiring tensors of this shape.
The execution of multiple test cases selecting inputs from
different categories provides information about the func-
tion’s true input constraints. A valid input shows that its
properties satisfy the true input constraints, while an invalid
input shows that its properties do not satisfy the input
constraints.

SKIPFUZZ assumes that inputs with the same properties
(i.e., in the same category) would satisfy the same input
constraints; if an input fails a given validation check, then
the other inputs with the same properties (i.e., in the same
category) will fail the same check.

2.4 Motivating Example

Figure 1 shows an example of a test case produced for a
function, tf.placeholder_with_default. To select valid in-
puts that satisfy the function’s input constraints, the inputs
should have the right type, shape, and range of values. If
shape is a list, there are other constraints such as the type or
range of values of its elements. If provided an invalid input
that does not satisfy these constraints, the library throws an
exception.

To discover its input constraints, SKIPFUZZ has to invoke
the function multiple times with different values of shape
and observe their outcomes. A successful invocation indi-
cates that the selected input satisfies the input constraints,
and an unsuccessful invocation (i.e., the library throws an
exception) indicates otherwise. All inputs with the same
wrong shape will fail the same validation check on the input
shape, resulting in the same exception. Thus, inputs with the
same wrong shape are redundant as they provide no new
information for learning the input constraints. SKIPFUZZ
skips past the inputs in the same category to inputs from
other categories, invoking the function with inputs that
match different properties.

After observing several outcomes of invoking the func-
tion, SKIPFUZZ forms a hypothesis regarding the constraints
of shape. A hypothesis is expressed as a disjunction of
properties to capture input constraints that are a union of
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Fig. 2: Overview of SKIPFUZZ. Step 1 : Seed inputs (e.g. collected from the library’s test suite) are grouped into input
categories. Step 2 : As the library is fuzzed, the active learner has 3 modes that determine what queries are posed to the
test executor. It selects input categories from the input space. Initially, in its (a) random generation mode, it randomly selects
input categories (denoted as circles). Next, in its (b) inference mode, it selects input categories to refine its hypothesis of the
input constraints, which are formed based on the execution log which indicates the outcomes (check marks denote valid
inputs and exclamation marks (!) denote invalid inputs) of prior queries. Finally, once a hypothesized input constraint is
accepted, in its (c) valid input generation mode, it selects only inputs satisfying the hypothesis. Each blue, dashed ellipse
shows the narrowing space of categories considered in each mode.

constraints. The actual constraints of the shape parame-
ter permits inputs typed list or TensorShape. SKIPFUZZ
expresses different constraints for inputs typed list and
TensorShape, treating them as two input categories.

Once SKIPFUZZ finds its model of the input constraints
sufficiently consistent, it stops refining its model. Then,
SKIPFUZZ selects inputs expected to be valid, i.e., invoking
the function without error, by sampling inputs following its
model. This allows SKIPFUZZ to select inputs that pass the
input validation checks.

In the example in Figure 1, if shape is a quantized tensor,
then the library’s kernel code accesses an illegal memory
location and triggers a segmentation fault. In other words,
a quantized shape is a crashing input. SKIPFUZZ discovers
this crash when refining its model of the function’s input
constraints as the active learner steers fuzzing away from
inputs that it is certain is invalid.

3 SKIPFUZZ

3.1 Overview

Figure 2 shows the overview of SKIPFUZZ. In the first
step ( 1 in Figure 2), SKIPFUZZ collects inputs from the
execution of the library’s test suite and associates them
with properties that they satisfy (Section 3.2). Then, each
input is grouped into input categories with other inputs
satisfying the same properties. These inputs form the input

space considered by SKIPFUZZ. In the second step ( 2 in
Figure 2), SKIPFUZZ fuzzes the deep learning libraries. This
involves the generation of test cases by selecting inputs
to use as arguments in invoking the API functions. The
selection of inputs involves an active learning algorithm
that infers the input constraints of a target API function.
The active learner constructs queries to check if an input
category is a member of the input domain, i.e., its inputs are
valid. The test executor has the role of the oracle; to respond
to the query, it invokes the library with appropriate inputs
sampled from the queried category, checking if they satisfy
the actual input constraints (i.e., the function invocation
does not lead to an exception or crash).

The test executor constructs test cases by sampling
inputs associated with the target input categories. As it
constructs and executes a test program, the invocation of
the library is monitored for crashes (errors in the C++ code
of the libraries that may be exploited by an attacker, e.g.,
segmentation faults) and exceptions thrown by the library
are caught. The observation (i.e., query and the outcome
of the test execution, valid, invalid, or crash) is written to
the execution log. Considering these observations, the active
learner refines its hypothesis and constructs more queries.

During fuzzing, SKIPFUZZ employs active learning to
learn the input constraints of the API function. The fuzzing
loop involves an active learner and a test executor. The ac-
tive learner maintains a hypothesis of the input constraints
of a given API function. To check the hypothesis, it passes
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queries to the test executor. Each query is one input category.
On receiving the query, the test executor samples an input
that satisfies the input category and constructs a Python
program that invokes a function from the library’s API. Each
constructed Python program consists of code that selects the
inputs (e.g., the variable, shape, in Figure 1) using program
fragments (e.g., invocation of tf.constant) collected from
the developer test suite. After the inputs are selected, they
are passed as arguments to the function under test (e.g.,
tf.placeholder_with_default).

When fuzzing each target function, there are three
phases (described in detail in Section 3.3). Initially, as there
is no history to support a hypothesis, SKIPFUZZ’s randomly
selects input categories from the entire input space ((a)
in Figure 2). Afterward, the active learner begins to pose
queries to the test executor for input constraint inference
(described in Section 3.4). These queries are selected based
on the hypotheses ((b) in Figure 2). Each query corresponds
to one input category. Finally, once an adequately consistent
hypothesis is found, then SKIPFUZZ selects only inputs that
satisfy the input constraints indicated by the hypothesis ((c)
in Figure 2).

SKIPFUZZ maintains a list of crashing test cases. After
SKIPFUZZ is terminated, the crashes are output for further
inspection.

3.2 Step 1: Input property checking and input category
construction
SKIPFUZZ requires seed inputs before it begins categorizing
them. In our experiments, we use the developer test suite,
which is readily available from the deep learning libraries’
repositories, and execute them to obtain seed inputs. SKIP-
FUZZ instruments the API functions. As the test cases are
executed, the inputs passed as arguments to the functions
of the APIs are traced and recorded.

SKIPFUZZ enumerates the possible properties for each
recorded input, checking if the input satisfies each input
property. SKIPFUZZ categorizes the inputs by the properties
they satisfy. A mapping from the categories to their inputs
is maintained by SKIPFUZZ for efficient sampling of the
inputs.

SKIPFUZZ leverages the input categories to reduce re-
dundancy. As inputs from the same categories share the
same properties, they will satisfy the same input constraints
corresponding to these properties. By selecting inputs from
different categories, SKIPFUZZ aims to avoid constructing
multiple test cases with similar inputs that fail the same
validation checks, as it does not gain information necessary
for refining its hypotheses. By avoiding the use of inputs
that are similar to previously selected inputs, each test
case is more likely to provide new information about the
true input constraints. Hence, using inputs from different
categories leads to the use of fewer redundant inputs.

3.3 Step 2: Active Learning-driven fuzzing
In the second step, SKIPFUZZ begins fuzzing the deep
learning libraries. This is done through three phases.

(a) Random inputs generation. SKIPFUZZ begins gener-
ating test cases for each target function by selecting inputs
from random categories. This phase ends once SKIPFUZZ

Algorithm 1: The fuzzing loop of SKIPFUZZ which
involves the active learner posing queries to the test
executor.

function fuzz(input_categories):
1 history = []
2 while not done do
3 selected_category ←

active_learner(input_categories,history)
4 if selected_category == null then
5 random_category =

sample(input_categories)
6 input← sample(random_category)
7 else
8 input← sample(selected_category)
9 end

10 tc← construct_test_case(input)
11 outcome← execute(tc)
12 update(history, selected_category, outcome)
13 end

successfully produces a test case with valid inputs (i.e., the
function executes without error using the inputs).

(b) Input constraint inference. Once a valid input has
been identified, SKIPFUZZ is able to form hypotheses of
the input constraints (later described in Section 3.4). SKIP-
FUZZ tests the hypothesis that is most consistent with the
observations by selecting queries based on the hypothesis.
It selects input categories from which inputs should be
valid according to the hypothesis, as well as categories
from which invalid inputs should be produced. Through
interacting with the test executor, the active learner refines
the hypothesis.

The active learner forms hypotheses of the correct input
constraint, assessing them by quantitative measures of con-
sistency. These measures are computed using the number
of observed valid and invalid inputs that correctly and
incorrectly satisfy the hypothesized input constraints.

(c) Valid input generation. Once SKIPFUZZ considers
a hypothesis adequately consistent, SKIPFUZZ begins to
construct test cases with inputs that are valid according to
the hypothesized input constraints. This is done by sam-
pling inputs from the input categories that are part of the
hypothesis.

The procedure for selecting one argument given an
API function is given in Algorithm 1. Initially, SKIPFUZZ
begins the fuzzing campaign with purely random inputs as
the active learner is not able to construct queries without
previously observed executions (lines 4–6). After one valid
input is observed, the active learner begins to pose queries
to the test executor, which constructs test cases based on the
queries (line 3). When SKIPFUZZ has entered its valid input
generation mode, the active learning only poses queries to
guide the selection of inputs that are expected to be valid
according to the hypothesis. Given the input category in a
query, the fuzzer selects a random input that is associated
with the input category (line 8). With the selected input,
a test case is constructed and then executed to invoke the
library (lines 10–11). The outcome of the test execution is
written to the execution log (line 12), history, which is used
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in the next iteration by the active learner to pose a new
query.

3.4 Input constraint inference
The key novelty of SKIPFUZZ is that it selects inputs used
for fuzzing to gain information to infer the input constraints
(in (b) of step 2 in Figure 2). Through the interaction of the
active learner with a test executor, the active learner records
the test outcomes in the execution log. These observations
guide the formation of hypotheses of the input constraints
and for the active learner to pose queries.

Selecting queries based on a hypothesis. We refer again
to Table 1, the glossary of terms used in the active learning
phase of SKIPFUZZ. The active learner in SKIPFUZZ poses
queries to the test executor to check if its hypothesis of the
actual input constraints indeed match the true input con-
straints. If the hypothesis is a match, then inputs satisfying
the hypothesis should be accepted by the library while
inputs that do not satisfy the hypothesis should be rejected
by the library. Hence, we expect that inputs from the input
categories of the hypothesis should lead to valid outcomes.
Conversely, inputs that are missing at least one property in
a category of the hypothesis should be rejected. We expect
that these queries should result in invalid outcomes. If these
queries lead to valid outcomes, then it implies that the
hypothesis is less permissive than the true input constraints.

As such, for one hypothesis, the active learner constructs
several queries by selecting input categories with respect to
the input categories that compose the hypothesis. One set of
queries checks that inputs satisfying the hypothesis indeed
satisfy the actual input constraints (i.e., the test constructed
will be executed without error). Another set of queries
checks if the inputs that do not satisfy the hypothesis do
not satisfy the input constraints (i.e., the test constructed
results in an error when executed).

At the beginning of the fuzzing campaign, SKIPFUZZ
selects random inputs. As the fuzzing proceeds, the active
learner begins to pose queries to the test executor. The active
learner considers the execution log to select input categories
to form a hypothesis, and selects input categories as queries.
It optimizes for the confirmation of possible hypotheses of
the input constraints of the API function.

After the test executor component evaluates a test case,
the query (i.e., choice of input category) and test outcome
are written in the execution log. If a test case results in an
exception thrown by the library, then the input is invalid. If
the library invocation succeeds without any exceptions, then
the input is valid. If the test case crashes the library, then the
input is a crashing input.

Measuring consistency. At any given time, there may
be multiple hypotheses that are considered by the active
learner. The active learner selects the hypothesis that is the
most consistent with the observations in the execution log.
To do so, it quantitatively measures the proportion of valid
and invalid inputs that are consistent with the hypothesis.
Given a perfectly consistent hypothesis, all valid inputs
will be included in an input category in the hypothesis.
Conversely, all invalid inputs should not satisfy the hypoth-
esized input constraints.

Within SKIPFUZZ, we do not expect that the hypothesis
will perfectly match the input constraints. We compute

quantitative measures of a hypothesis’ consistency. Each
hypothesis proposed by the active learner is assessed on its
consistency with regard to the observations in the execution
log; valid inputs should satisfy the input constraints in
the hypothesis and invalid inputs should not. SKIPFUZZ
assesses each hypothesis and selects one that is the most
consistent with the observed executions. A good hypothesis
includes input constraints that cover a large part, if not
all, of the valid observations. Additionally, it should not
incorrectly cover invalid inputs. SKIPFUZZ uses precision
and recall to assess the quality of a hypothesis. Out of all
inputs selected, given that covered(valid, hypothesis)
represents the number of valid inputs that fall within the
hypothesis, and covered(all, hypothesis) represents the
number of inputs, both valid and invalid, that fall within
the hypothesis. The precision, P, and recall, R, are computed
as follows:

P =
covered(valid, hypothesis)

covered(all, hypothesis)

R =
covered(valid, hypothesis)

|valid|
Precision is the proportion of valid inputs that fall within

the hypothesized input constraints out of all the observed
inputs. Recall is the proportion of valid inputs that fall
within the hypothesized input constraints out of all the
observed valid inputs. The two metrics measure the ade-
quacy of the hypothesized input constraint. A hypothesis
is adequately consistent if the precision and recall exceed a
threshold set at the start of the fuzzing campaign.

4 IMPLEMENTATION

In this section, we discuss the implementation of SKIPFUZZ.
Building the input database. SKIPFUZZ takes the API

and the developer test suite as its input. We obtain the input
values used in the library test suite as the seed inputs for
SKIPFUZZ, the Python library code is instrumented to track
the invocation of every function call to record their argu-
ment inputs. When a function is invoked, SKIPFUZZ records
the values of its inputs, and traces backwards through the
code in the test case to record how each input was con-
structed. The functions to construct the inputs, the returned
values of their invocations, and the input properties satisfied
by the inputs are stored in the database. Subsequently,
inputs are selected by fetching and invoking the functions.
The library is only instrumented for collecting inputs. Once
SKIPFUZZ has constructed the input database, it no longer
uses the instrumented library, and fuzzing is performed on
the uninstrumented library as the properties of input can be
determined without the library.

Crash Oracle. SKIPFUZZ is implemented with a crash
oracle. Test programs ran by the test executor are monitored
for crashes. Inputs that crash the library are written to the
execution log. These crashes are later investigated manually
to identify unique crashes before we report them to Tensor-
Flow and PyTorch. Crashes are weaknesses considered as
security vulnerabilities [5] (e.g. segmentation faults).

Active Learning. The active learner takes the execution
log as input and produces a series of queries to be posed
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to the test executor. The queries are constructed based
on the subset of input categories in the hypothesis. The
construction of a hypothesis and the selection of queries are
obtained through the execution of a logic program. Using a
logic program allows us to declaratively express the desired
characteristics of a hypothesis and optimize the selection of
input categories against a criteria. The active learner selects
an appropriate hypothesis while maximizing the number
of valid inputs that match the hypothesis, minimizing the
number of invalid inputs that are incorrectly matched by
the hypothesized input constraint, and favouring simpler
hypothesis by minimizing the number of input categories
used in the hypothesis. In this way, SKIPFUZZ assesses
each hypothesis on its consistency with the observed test
outcomes.

SKIPFUZZ accepts a hypothesized input constraint con-
sidering if its precision and recall exceed a threshold. In
our experiments, we set a low threshold for both precision
and recall at 0.25. This enables the input constraints to be
inferred for a large proportion of the API. As our goal is
to fuzz the API thoroughly, we find allowing the fuzzer to
focus on a broad region of inputs that include the valid
domain of inputs of the functions is more beneficial than
precisely identifying the valid domain of inputs. The low
thresholds set at this stage do not adversely impact the pro-
portion of valid inputs selected by SKIPFUZZ when using
the hypothesized input constraints to select valid inputs.
This is because the logic program already optimizes the
selection of hypotheses for a high level of consistency.

Interleaving of target functions. The active learner
SKIPFUZZ employs clingo [14] to execute the logic pro-
grams used to select the next set of inputs. Logic programs
take a significant amount of time to be executed to pro-
duce their output. To allow time for the logic program to
be executed, SKIPFUZZ interleaves the construction of test
cases for different API functions, coming back to the same
function only after completing a test case for other API
functions. This provides ample time for the logic program to
be run before the same function is tested again, minimizing
the impact of their overhead on the fuzzing process.

5 EVALUATION

5.1 Research Questions
Our experiments aim to answer the following questions.

RQ1. Does SKIPFUZZ produce crashing inputs?
SKIPFUZZ’s primary objective is to find crashing inputs.

We count the number of new crashes that have not been
previously reported, which are reported to the library devel-
opers for validation. We also assess if SKIPFUZZ can trigger
the crashes found by prior approaches, and if they trigger
the crashes found by SKIPFUZZ.

RQ2. Does SKIPFUZZ sample inputs with less redun-
dancy?

Active learning should enable SKIPFUZZ to reduce re-
dundancy during fuzzing by selecting a wide range of input
categories. We compare the inputs selected by SKIPFUZZ
and the baselines in fuzzing the functions known to crash.

RQ3. Does SKIPFUZZ sample valid inputs after learning
an input constraint?

If the input constraints are accurately learned, then the
inputs selected by SKIPFUZZ are expected be valid if they
satisfy the inferred constraints. We investigate if this is true.

RQ4. Which components of SKIPFUZZ contribute to its
ability to find crashing inputs?

SKIPFUZZ’s selection of inputs is less redundant, and
the active learning steers guides input selection towards
valid inputs. We perform an ablation study to determine
the contributions of SKIPFUZZ’s components.

5.2 Experimental Setup
Baselines. We compare SKIPFUZZ against the fuzzers
that selects inputs from a closed set, DeepRel [11] and
DocTer [41]. From their replication packages, we run the
tools and analyze the list of reported bugs.
DeepRel builds on top of FreeFuzz [40], using the same

strategy of selecting inputs for each function. DeepRel and
FreeFuzz use inputs collected from resources such as pub-
licly available models and the library test suite. DeepRel
improves over FreeFuzz by identifying pairs of similar func-
tions, allowing inputs known to be valid for one function
to be shared and used when fuzzing the other function.
As DeepRel and FreeFuzz uses the same input generation
strategy, we only compare SKIPFUZZ against DeepRel.
DocTer extracts input constraints from the library docu-

mentation. Then, it selects inputs from a collection of man-
ually constructed inputs to invoke the libraries considering
the extracted input constraints.

Environment. We run experiments on TensorFlow 2.7.0
and PyTorch 1.10, the same version of the libraries used
in the experiments of DeepRel [11]. We collect a list of
all APIs of TensorFlow and PyTorch. It is used in our
initial experiments, where we run the approaches on every
function. Subsequently, we focus our analysis on the ability
of the fuzzers to find inputs that trigger the crashes found
by the other approaches.

We configured and ran the fuzzers for up to 48 hours. In
the prior experiments of the baseline fuzzers [11], [40], [41],
the tools were allowed up to 1,000 [11], [40] or 2,000 [41]
executions for each function. To generate 1,000 test cases,
we executed DeepRel and it took 172 hours and 43 hours to
complete generating test cases for TensorFlow and PyTorch.
DocTer took 16 hours for TensorFlow and 25 hours on
PyTorch. Therefore, to use the same budget for a fair com-
parison, we tweaked the number of test cases generated by
the baseline fuzzers to fit in 48 hours and reran the fuzzers.
Apart from rerunning the tools, we also considered the
original set of bugs reported, linked from their replication
packages.

Our experiments used a machine with an Intel(R)
Xeon(R) CPU E5-2640 v4 @ 2.40GHz, 205G, Tesla P100.
While our fuzzer does not directly use the GPU, some
library functions may use the GPU.

5.3 Experimental Results
5.3.1 RQ1. Crashes detected

Existing crashes. We perform an analysis of the capability of
the approaches in detecting existing crashes. In this analysis,
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TABLE 3: The number of unique new vulnerabilities of
TensorFlow reported in this study and prior studies.

Approach # new vulnerabilities
DocTer 1
FreeFuzz 7
DeepRel 1
SKIPFUZZ 23

we consider all crashes found by the approaches. To perform
this analysis, we consider that a crash was not detected if its
corresponding API is not covered by the tool, if the tool does
not report the bug although test cases were generated for
the function, and if the the set of bugs reported linked from
their replication packages does not include the vulnerability.
Within the scope of this study, we consider only bugs that
led to crashes, as we wanted to prevent overwhelming the
library developers. Although prior studies have reported
other types of bugs, bugs found using other test oracles may
not always be appreciated by the library developers [2].

SKIPFUZZ detects a total of 166 crashing functions, 108
in TensorFlow version 2.7.0 and 58 in PyTorch version 1.10.
From the 108 TensorFlow functions, we grouped related
crashes and reported 43 vulnerabilities. From the 58 PyTorch
functions, we reported 10 vulnerabilities. After correspond-
ing with the library developers, they confirmed that 23 of
the TensorFlow vulnerabilities and 5 of the PyTorch vulner-
abilities were previously unknown. The remaining crashes
were confirmed as vulnerabilities, but they were already
known by the developers (although the fixes were not
released yet). From these reports, 23 CVEs were assigned.

Next, we analyze the extent to which SKIPFUZZ, DocTer,
and DeepRel detect the same vulnerabilities. Of the 108
vulnerable TensorFlow and 58 vulnerable PyTorch functions
found by SKIPFUZZ, DocTer was able to successfully se-
lected crashing inputs to 6 of the 108 vulnerable functions
in TensorFlow and 12 of the 58 vulnerable functions in
PyTorch. Overall, DocTer detects just 18 (18/166, or 11%)
of the 166 vulnerable functions detected by SKIPFUZZ.

Next, we investigate the crashes found by DocTer, pro-
vided in its replication package. DocTer found bugs in 174
API functions (including both crashes and documentation
errors), and of these 174 functions, 120 of them lead to
crashes. When executed on the versions of libraries before
these crashes were fixed, SKIPFUZZ is able to detect 88 (73%)
out of the 120 crashing functions in TensorFlow detected by
DocTer. On PyTorch, SKIPFUZZ is able to detect 7 (23%) out
of the 31 crashing functions detected by DocTer. Overall,
SKIPFUZZ detects 95 (95/151, or 63%) out of 151 crashing
functions detected by DocTer.

Next, we compare SKIPFUZZ against DeepRel and
FreeFuzz. Among the crashing functions found by SKIP-
FUZZ, we found that DeepRel and FreeFuzz was able to
detect crashes for only 9 of the 108 TensorFlow functions
and 7 of the 58 PyTorch functions (16/166, 10%). We in-
vestigate the bugs found by DeepRel and FreeFuzz. The
original experiments done to evaluate FreeFuzz [40] and
DeepRel [11] resulted in 39 bug reports on TensorFlow, of
which 10 involved crashes, and 72 bug reports on PyTorch,
of which 7 involved crashes. A total of 17 crashing functions
were found in their original experiments. When executed

Fig. 3: Crashes found by the fuzzers. SKIPFUZZ detects
95/151 crashing functions reported by DocTer, and DocTer
detects 18/166 crashing functions by SKIPFUZZ. SKIPFUZZ
detects 11/17 crashing functions reported by DeepRel, and
DeepRel detects 16/166 crashing functions found by SKIP-
FUZZ.

on versions of the libraries before the crashes were fixed,
SKIPFUZZ detects 8 (80%) of the 10 crashes on TensorFlow
and 3 (43%) of the 7 crashes on PyTorch (11/17, or 65%).

Figure 3 shows two Venn diagrams summarizing the
number of functions that each approach produces crashing
inputs to. Out of the 317 crashing functions (166 crashing
functions found by SKIPFUZZ and 174 crashing functions
found by DocTer), there are 113 crashes found by both
SKIPFUZZ and DocTer. 148 crashing functions were found
only by SKIPFUZZ, and 56 were found only by DocTer.
Out of 183 crashing functions (166 by SKIPFUZZ, 17 by
DeepRel/FreeFuzz), 133 crashing functions were found by
both approaches. 150 crashing functions were found only by
SKIPFUZZ, and 6 were found only by DeepRel.

New vulnerabilities in TensorFlow. Table 3 shows the
number of new crashes found in the experiments of DocTer,
FreeFuzz, and DeepRel. On TensorFlow, we determine if
a crash is new by going through the list of TensorFlow
vulnerability reports and comparing the referenced bug
reports against the bug reports referenced by the replication
packages of the prior approaches. Of the several hundred
crashing functions detected by SKIPFUZZ, we analyzed the
crashes, minimizing the test cases and grouping crashes
we suspected had the same root cause. Then, we reported
the unique crashes to reduce the workload of the library
developers. Finally, we reported 33 vulnerabilities. 23 CVE
IDs assigned were assigned in TensorFlow. In compari-
son, DocTer [41] found 1 newly discovered vulnerability.
FreeFuzz [40] and DeepRel [11] found a total of 8 crashes.
We do not perform this analysis for PyTorch as its devel-
opers do not assign CVEs to potential security weaknesses.
However, we note that the PyTorch developers have fixed
the 6 crashes that we have reported.

Apart from the baseline approaches discussed, Tensor-
Flow is a fuzz target in the OSS-Fuzz project [3], which
employs coverage-guided fuzzers. OSS-Fuzz has found over
30,000 bugs in open source projects, but only 6 security
bugs in TensorFlow1. Evidently, finding new vulnerabilities
is challenging.

1. Issues tagged “Bug-Security” on https://bugs.chromium.org/p/
oss-fuzz/issues/list?sort=-opened&can=1&q=proj:TensorFlow
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TABLE 4: Coverage of input properties

Approach % input properties covered
DocTer 15%
DeepRel 16%
SKIPFUZZ 31%

Answer to RQ1: SKIPFUZZ finds new crashes, with
23 CVEs assigned. Up to 90% of the crashes were not
found by the baselines. SKIPFUZZ detects up to 63%
of crashes found by the baselines.

5.3.2 RQ2. Reducing input redundancy.
We investigate the selection of inputs by SKIPFUZZ, First,
we assess if selecting inputs sharing the same properties
as a previously used input is indeed redundant. Then, we
evaluate the reduction in redundancy by measuring how
many input properties match at least one input during
fuzzing. A greater coverage of input properties imply less
redundancy.

Same properties-same outcome assumption. SKIPFUZZ
relies on the assumption that inputs matching the same
properties execute the same behavior, therefore, they are
redundant. We assess this assumption by counting how
often using inputs from the same input category result in
the same outcome. If the assumption holds, then the vast
majority of inputs of the same category should result in
the same outcome. Otherwise, they would lead to different
outcomes. We analyze the generated test cases. On average,
across all API functions, when inputs shared the same input
properties, the invocation of the function resulted in the
same outcome (e.g., same type of exception thrown) 96.3%
of the time. This result suggest that our assumption is ap-
propriate and can be adopted to reduce input redundancy.

Input Redundancy. We investigate the number of prop-
erties that were satisfied by an input passed to the libraries
as a proportion of all input properties observed in the ex-
periments. A higher coverage of input properties indicates a
greater diversity of inputs and a low amount of redundancy
in input generation. Conversely, a low coverage may indi-
cate that similar inputs was selected over and over again,
which implies a high level of redundancy as the inputs
may be triggering the same library behavior (e.g., failing
the same validation checks). We focus on the test cases
generated to target the crashing functions to investigate the
reason for SKIPFUZZ’s stronger ability to select crashing
inputs.

Table 4 shows the experimental results. The inputs used
by SKIPFUZZ in its test cases cover two times more input
properties than the inputs used in the test cases gener-
ated by DeepRel and DocTer. While the inputs selected by
DeepRel and DocTer cover 16% and 15% of the possible
input properties, SKIPFUZZ achieves an average of 37%
property coverage. This confirms that SKIPFUZZ was able to
select a wide range of inputs that were less likely to result
in the same outcome.

Answer to RQ2: Yes, SKIPFUZZ covers more input
properties than prior approaches.

TABLE 5: Proportion of valid inputs selected

Approach % of valid test cases
Random selection of inputs 1%
DocTer 13%
SKIPFUZZ 24%
DeepRel 77%
SKIPFUZZ (valid input mode) 80%

5.3.3 RQ3. Generating valid inputs

SKIPFUZZ performs input constraint inference. We study
if the inferred input constraints are precise enough for
producing valid inputs.
DocTer selects just valid inputs 13% of the time, un-

derperforming SKIPFUZZ which produces valid inputs 24%
of the time (and 80% after inferring the input constraints).
This validates our initial intuition for using active learning.
The better performance of SKIPFUZZ in generating valid
inputs indicates that active learning may be more success-
ful in inferring input constraints than DocTer’s use of the
API documentation, which may be incomplete [41]. The
improvements of SKIPFUZZ over DocTer shows that the
selection of inputs should use information about both the
validity and the redundancy of the inputs.
DeepRel uses FreeFuzz as its test generator, and there-

fore, will produce the same output as FreeFuzz. Their input
generation strategy is to select a different input with the
same type and value from the seed test cases. Through
this strategy of narrowing down the choices of inputs, the
vast majority of inputs selected by FreeFuzz and DeepRel
are valid. However, as discussed in the previous section, a
large proportion of valid inputs may imply that the fuzzer
is using similar inputs repeatedly, leading to redundancies.
From Table 4, DeepRel covers fewer input properties, which
may have led to a lower chance of generating crashing
inputs (Table 3). In contrast, SKIPFUZZ is able to better
explore the space of invalid inputs and find crashing inputs.

Table 5 shows the proportion of valid inputs selected. We
compare SKIPFUZZ against DocTer as well as a simple base-
line that randomly selects inputs used in the libraries’ test
suite. While SKIPFUZZ selects valid inputs 24% of the time
considering all three input generation modes, SKIPFUZZ
produces valid inputs 80% of the time in its valid input
generation mode (after inferring the input constraints). This
is higher than the proportion of valid inputs selected by
both DocTer and DeepRel, demonstrating the benefit of the
active learning for input constraint inference

Answer to RQ3: Yes, 80% of inputs selected by SKIP-
FUZZ are valid after inferring an input constraint.
This is a 6x improvement over DocTer, which ex-
tracts constraints from documentation.

5.3.4 RQ4. Ablation analysis

We perform an ablation study on SKIPFUZZ. SKIPFUZZ−

refers to a version of SKIPFUZZ where inputs are sampled
from the input categories, but there is no active learner
posing queries and no input constraint inference (removing
2 in Figure 2). SKIPFUZZ−− refer to a version of SKIPFUZZ
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TABLE 6: Ablation analysis of the components in SKIPFUZZ.
% valid is the proportion of valid inputs that are selected.
SKIPFUZZ− removes active learning. SKIPFUZZ−− removes
the use of input properties and active learning.

Approach Property % valid # crashes
coverage

SKIPFUZZ 31% 24% 168
SKIPFUZZ− 93% 1% 112
SKIPFUZZ−− 84% 1% 52

where inputs are selected randomly (removing both 1 and
2 in Figure 2).

Table 6 shows the results of the ablation analysis.
Without using active learning to infer input constraints,
the number of crashes found by SKIPFUZZ− drops from
168 to 122, a 26% decline. Without using active learning,
SKIPFUZZ− does not drive the test executor toward valid
inputs. While it covers a higher proportion of properties
(93%), it never steers fuzzing towards valid inputs. The
low proportion of valid inputs generated (1%) suggests that
many crashes are not discovered through the generation of
valid inputs. SKIPFUZZ is able to find many crashes because
they are discovered through the selection of invalid inputs
that resemble valid inputs such that they pass the input
validation checks. During fuzzing, SKIPFUZZ selects these
inputs as they are required to refine SKIPFUZZ’s model of
input constraints.

Without the input properties, SKIPFUZZ−− selects inputs
entirely at random. The number of detected crashes substan-
tially drops to just 52, less than half found when skipping
over redundant inputs, and one third of the total crashes
found by SKIPFUZZ. Overall, both a lack of input redun-
dancy and the active learning-guided selection of inputs are
essential to finding crashing inputs.

Answer to RQ4: Our experimental results suggest
that the input properties are essential to SKIPFUZZ
and that active learning substantially boosts SKIP-
FUZZ’s effectiveness. The consideration of input
properties reduces redundancy (and finds 2x more
crashes). The use of active learning allows the dis-
covery of crashing inputs that are invalid but pass
input validation checks (and finds 3x more crashes
over the baseline fuzzer).

6 DISCUSSION AND THREATS TO VALIDITY

Our experiments demonstrate that SKIPFUZZ outperforms
prior approaches in generating crashing inputs to Tensor-
Flow and PyTorch. Our analysis suggests that SKIPFUZZ is
effective due to reduced redundancy in its selected inputs,
which stem from the use of active learning in input con-
straint inference and avoiding the use of inputs with the
same set of input properties.

Inferred Input Constraints. Compared to the constraints
indicated in the documentation, the constraints learned
through active learning are more permissive. The input
constraints can be compared by the proportion of selected
valid inputs. The constraints inferred by SKIPFUZZ enable

80% of selected inputs to be valid. In prior work [41], input
constraints extracted from documentation enable only 33%
of selected inputs to be valid, which suggests that the docu-
mentation does not provide a complete set of constraints.

Limitations of generating only valid inputs. Prior ap-
proaches had strategies for finding valid inputs, but our
experiments suggest that a fuzzer generating only valid
inputs would not detect a large number of crashes. Even
without active learning and the input properties, SKIPFUZZ
outperforms both DocTer [41] and DeepRel [11] in finding
crashing inputs. Our experiments imply that fuzzers should
not omit the selection of invalid inputs. Both the generation
of valid and invalid inputs are important.

Reducing input redundancy. While DocTer [41] could
also generate invalid inputs that did not match the con-
straints inferred from documentation, it did not have a
systematic strategy of preventing the selection of redundant
inputs. In comparison, SKIPFUZZ’s use of input properties
led to a lower input redundancy, allowing the selection of
inputs that passed input validation checks, but were not
correctly handled by the library.

Threats to construct validity include threats related to
the experimental metrics. We use standard metrics from
prior studies [11], such as API coverage. Moreover, we
assess SKIPFUZZ on the discovered vulnerabilities, which
were confirmed by library developers. Hence, there are
minimal threats to construct validity.

Threats to external validity are concerned with the
generalizability of our approach. Our experiments focused
on TensorFlow and PyTorch, which are the most commonly-
used deep learning libraries. As the library developers have
indicated that assumptions of differential testing approaches
may not always be valid [2], our work focuses on finding
crashes as they are considered more important by the devel-
opers (e.g. they may assign CVEs to the crash). Hence, there
are minimal threats to external validity.

7 RELATED WORK

Bugs in deep learning libraries. Prior studies [20], [21],
[22] have investigated bugs in deep learning programs. Jia
et al. [21] reported that common root causes of bugs within
TensorFlow include type confusion (incorrect assumptions
about a variable type), dimension mismatches (inadequate
checks of a variable’s shape), and unhandled corner cases
(usually related to incorrect handling of a specific variable’s
value, e.g. division by zero errors). The root causes match
the input properties considered by SKIPFUZZ.

Fuzzing deep learning models and systems. Re-
searchers have proposed approaches fuzz either deep learn-
ing models [12], [16], [42] or larger systems that use deep
learning [8], [13], [18], [34], [43], [46]. Other approaches use
static analysis [24], [26]. SKIPFUZZ fuzzes deep learning
libraries rather than individual models or systems.

Fuzzing deep learning libraries. Several works [15],
[17], [29], [37], [39] generate or mutate deep learning models
for testing deep learning libraries. Subsequently, the exper-
iments of FreeFuzz [40] showed that API-level testing of
deep learning libraries is more effective. Some approaches
perform metamorphic and differential testing [17], [29], [37],
[39], [42]. Predoo targets precision errors in TensorFlow [45].
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ExAIS [30] uses specifications of the deep learning layers
for fuzzing. As it requires manual analysis, its scalability is
limited. These studies overlook the systematic selection of
inputs for minimizing redundancy. The closest approaches
to SKIPFUZZ are DocTer [41] and DeepRel [11], which have
been discussed and used in our experiments.

Input validation. SKIPFUZZ addresses the problem of
generating valid inputs through input constraint inference.
Several approaches [10], [19], [25], [28], [38] use static analy-
sis to address the problem. DriFuzz [33] proposes a method
of generating high-quality initial seed inputs. Unlike these
approaches, SKIPFUZZ uses active learning to learn the
input constraints to generate valid inputs.

Active Learning. Our approach uses active learning [6],
[7], [9], [31], which queries an oracle and learns from its
feedback. In classification tasks, active learning is used to
query for labels of informative data instance when labeling
every instance is too difficult [23], [31], [44]. Recent work
uses active learning to learn models of programs, and then
regenerate programs using the models to remove undesired
behaviors [32], [36]. SKIPFUZZ applies active learning for a
novel task of learning models of input constraints that are
used in fuzzing.

8 CONCLUSION AND FUTURE WORK

In this study, we propose SKIPFUZZ, an approach for testing
deep learning libraries. SKIPFUZZ uses active learning to
infer input constraints for the libraries’ API. SKIPFUZZ has
two advantages over existing approaches. First, it infers the
input constraints without the use of documented specifica-
tions. Second, it guides the selection of a less redundant
set of inputs during fuzzing. Our experiments demonstrate
that both the use of the input properties and active learning
are important. In future work, we plan to synthesize the
property templates based on analysis of the library’s source
code, rather than manually writing them.

The replication package of SKIPFUZZ is available
at https://zenodo.org/record/7600936 and https://github.
com/skipfuzz/skipfuzz.
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