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ABSTRACT

Software engineers depend heavily on software libraries and have
to update their dependencies once vulnerabilities are found in them.
Software Composition Analysis (SCA) helps developers identify
vulnerable libraries used by an application. A key challenge is the
identification of libraries related to a given reported vulnerability
in the National Vulnerability Database (NVD), which may not ex-
plicitly indicate the affected libraries. Recently, researchers have
tried to address the problem of identifying the libraries from an
NVD report by treating it as an extreme multi-label learning (XML)
problem, characterized by its large number of possible labels and
severe data sparsity. As input, the NVD report is provided, and as
output, a set of relevant libraries is returned.

In this work, we evaluated multiple XML techniques. While pre-
vious work only evaluated a traditional XML technique, FastXML,
we trained four other traditional XML models (DiSMEC, Parabel,
Bonsai, ExtremeText) as well as two deep learning-based models
(XML-CNN and LightXML). We compared both their effectiveness
and the time cost of training and using the models for predictions.
We find that other than DiSMEC and XML-CNN, recent XML mod-
els outperform the FastXML model by 3%-10% in terms of F1-scores
on Top-k (k=1,2,3) predictions. Furthermore, we observe significant
improvements in both the training and prediction time of these
XML models, with Bonsai and Parabel model achieving 627x and
589x faster training time and 12x faster prediction time from the
FastXML baseline. We discuss the implications of our experimental
results and highlight limitations for future work to address.
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« Security and privacy — Software and application security;
« Computing methodologies — Machine learning; Supervised
learning; Natural language processing.
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1 INTRODUCTION

Usage of third-party libraries is crucial in software development
as they help developers to build their applications by promoting
software reuse. However, the use of libraries also increases the
burden of software developers as they have to be aware of security
vulnerabilities found in them [2, 12, 17, 28, 34, 37, 38, 47]. Consid-
ering the prevalent use of open-source libraries, it is important to
understand and manage the threat of library vulnerabilities.

Software Composition Analysis (SCA) has been proposed to auto-
matically identify vulnerable dependencies used by an application.
Figure 1 shows the SCA workflow, which involves matching an
application’s dependencies with a database of known vulnerable
libraries [11]. A team of security researchers maintains the data-
base by monitoring and curating vulnerability data from multiple
sources, including the National Vulnerability Database (NVD). A
vulnerability report typically consists of an identification number,
its CVE (Common Vulnerability Enumeration), a description of
the vulnerability, references related to the vulnerability, and a set
of CPE (Common Platform Enumeration) that correspond to the
packages and libraries that are related to the vulnerability.

While vulnerability reports do mention related libraries, most
vulnerability reports fail to include the full list of affected libraries.
As an example, consider CVE-2016-7046 shown in Figure 2. In
reality, the undertow framework, as well as the undertow-parent
package, is affected by the vulnerability. However, its CPE and
description of the vulnerability do not explicitly indicate them.
After analyzing 7,666 vulnerability reports (c.f. Section 3.1), we find
that 53.3% of the reports do not mention the affected libraries in
their descriptions and CPE configurations. Human effort is needed
to manually identify the affected vulnerable libraries but is slow
and prone to errors. An automated approach that predicts relevant
libraries from given vulnerability reports would aid the process.

A recent study by Chen et al. [11] has framed the problem as
an XMTC (extreme multi-label text classification), also commonly
known as XML (extreme multi-label learning), task. Our task in-
volves the assignment of a set of relevant labels (i.e., affected li-
braries, manually curated by a team of security researchers) to a
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Figure 1: Software Composition Analysis workflow. Security
researchers have to accurately analyze vulnerability reports
from NVD.

CVE-2016-7046
Description

Red Hat JBoss Enterprise Application Platform (EAP) 7,
when operating as a reverse-proxy with default buffer sizes,
allows remote attackers to cause a denial of service (CPU and
disk consumption) via a long URL.

References

- http://rhn.redhat.com/errata/RHSA-2016-2640.html

- http://rhn.redhat.com/errata/RHSA-2016-2641.html

- http://rhn.redhat.com/errata/RHSA-2016-2642.html

- http://rhn.redhat.com/errata/RHSA-2016-2657.html

- http://www.securityfocus.com/bid/93173

- https://bugzilla.redhat.com/show bug.cgi?id=1376646

CPE Configurations

- cpe:2.3:a:redhat:jboss_enterprise_application_platform:7.0:%:*: ¥ % % %

Figure 2: NVD entry for CVE-2016-7046. While the vulnera-
bility affects the Undertow library, the term “undertow” is
not explicitly mentioned in NVD.

given document (i.e., the vulnerability report) [19]. Our task in-
volves an extremely large number of labels (all possible libraries),
and each vulnerability report may be associated with multiple labels
(a vulnerability may affect multiple libraries). Indeed, our problem
shares many characteristics as the XML problem, including the data
sparsity problem, in which the majority of labels have only a few
training instances associated with them.

Chen et al. [11] explored and evaluated the use of a traditional
XML model, FastXML [40], on this task. They achieved an average
F1@k score of 0.51 for k=1,2,3. Their FastXML model has been
deployed within Veracode to help security researchers identify the
libraries affected by vulnerability reports. Their successful experi-
ments motivate us to apply more sophisticated models to the task.
However, Chen et al. discussed the challenge of the lack of training
data for the application of data-hungry techniques, such as deep-
learning models. While the FastXML model considerably improves
over using just the CPE configuration (average F1@k score for
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k=1,2,3 of 0.41) to identify libraries, we investigate and analyze the
performance of multiple XML approaches, including deep-learning
based approaches to better understand the applicability of XML
to the problem. We also investigate the efficiency of these XML
techniques to assess their feasibility for practical usage.

In this study, we conduct an investigation and experiments on
the application of multiple recent XML techniques for automated
library identification from vulnerability reports. Specifically, we
investigate the following research question:

e RQ1: Do deep learning-based models and other recent XML
models outperform FastXML in identifying libraries affected
by a vulnerability?

e RQ2: How efficient are the different XML techniques?

To answer these questions, we identify six XML models that
were recently proposed and have outperformed FastXML in other
XML tasks. Four of them build on traditional approaches that
take either a one-vs-all approach [3, 55, 56] or a tree-based ap-
proach [21, 26, 39, 40], while two models [23, 29] use deep learning.
We experiment using these XML techniques in our task of auto-
mated library identification. We use the same dataset as Chen et
al. [11], which contains 7,696 vulnerability reports with 4,682 labels
that are collected from the NVD (National Vulnerability Database)
and SCA (Software Composition Analysis) vulnerability database.
To compare the effectiveness of the models, we use the same metrics
as Chen et al’s study, which are precision, recall, and F1 score at
k=1,2,3. To compare the efficiency of the models, we compare the
training and prediction time of all the XML techniques.

Our experiments highlight that more sophisticated XML tech-
niques can outperform FastXML. Specifically, LightXML, a transfor-
mer-based model, achieves 10% F1 improvement in the top-k (k=1,2,3)
predictions. Bonsai, a tree-based model, achieves up to 8% F1 im-
provement in the top-k (k=1,2,3) predictions while improving the
training and prediction efficiency by 589x and 12x, respectively
compared to FastXML. These results highlight that many XML
techniques, including deep learning-based approaches, outperform
FastXML. Despite the differences in their approach (tree-based vs.
deep learning), they achieve similarly strong performance.

We also conduct a qualitative analysis of the XML models and the
dataset. We compare the differences in predictions between the top-
performing model and the baseline model. We also investigate why
the existing XML techniques achieve strong performance despite
the problem of the long tail, where many labels appear uncommonly
(e.g., less than 5 times). Based on our analysis, we highlight the
limitations of XML models and suggest directions for future work.

The main contributions of our work are as follows:

(1) We evaluate four traditional and two deep learning XML
models on their effectiveness and efficiency on the problem
of library identification from vulnerability reports. Different
from the previous state-of-the-art work by Chen et al. [11],
we are the first to investigate the usage of deep-learning
XML approaches. Contrary to the belief of Chen et al. that
the small size of the dataset would render deep-learning ap-
proaches ineffective, we found that LightXML could achieve
better performance, improving the average F1-score by 10%
compared to FastXML.
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(2) We find that all considered XML models are sufficiently
efficient for practical usage, taking an average of less than
100 milliseconds to predict the affected libraries of a single
vulnerability report.

(3) We highlight the tradeoff between the performance and effi-
ciency of the XML models. Specifically, we show that while
LightXML provides the biggest improvement (10%), it re-
quires significantly more time for training and prediction.
When higher efficiency is required, we would like to suggest
using Bonsai, which achieves 7% performance improvement
compared to the previous state-of-the-art, while providing
589x faster training time and 12x faster prediction time.

(4) We highlight open problems that should be investigated by
future work, including the problem of labels referring to
different versions of the same library (e.g., Tomcat-8 and
Tomcat-6).

The rest of this paper is organized as follows. Section 2 introduces
the background of our work. Section 3 presents the methodology
used in our study. Section 4 shows our experimental results. Section
5 discusses our findings and the lessons learnt. Finally, Section 6
concludes the paper and mentions future work.

2 BACKGROUND

2.1 Extreme Multi-Label Classification

Extreme Multi-label Learning (XML) models classify documents
with relevant labels from an extremely large label space. Recent
XML models can be categorized into four categories:

One-vs-all Classifiers. One-vs-all classifiers split the problem
of multi label classification into multiple binary classification tasks
that are independent of one another. Each binary classifier learns
to distinguish a label from other labels. Classifiers in this category
typically achieve good performance for XML. However, they suffer
from computational and resource constraints, as they require the
training of as many binary classifiers as the number of labels. One-
vs-all classifier also suffers from labels that rarely occur in the
dataset and has limited training data (the tail label problem). The
lack of data for the tail labels leads to lower performance of the
binary classifier [3]. Some one-vs-all classifiers are PDSparse [56],
PPDSparse [55], and DiSMEC [3]. PDSparse and PPDSparse utilize
sparse learning to reduce the complexity of one-vs-all classifiers.
DiSMEC, considered the state-of-the-art for one-vs-all classifiers,
uses distributed computing to reduce the complexity of learning
linear classifiers for each label.

Tree-based Classifiers. Tree-based classifiers are based on de-
cision trees, where a label tree is recursively generated based on the
input features. Compared to one-vs-all classifiers, tree-based clas-
sifiers require less computational resources. However, they suffer
from the tree cascading effect, where erroneous predictions in the
upper nodes of the tree propagate to the lower nodes. Tree-based
XML models include FastXML [40], PfastreXML [21], Parabel [39],
Bonsai [26], and ExtremeText [52].

Both FastXML and PfastreXML recursively partition the feature
space to build the tree, where FastXML optimizes nDCG (Normal-
ized Discounted Cumulative Gain) based on a loss function, and
PfastreXML optimizes the propensity scored loss function. Parabel
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and Bonsai recursively partition the label space to build a tree. Para-
bel partitions the labels into two balanced groups using balanced
2-mean, resulting in a deep tree. Meanwhile, Bonsai partitions the
labels using K-means with a large value of K (e.g., more than 100),
resulting in a wide and shallow tree. This wide and shallow tree re-
duces the tree cascading effect in Bonsai architecture. ExtremeText
(XT) proposes an implementation of probabilistic label trees (PLT)
for XML by extending hierarchical softmax (HSM) to address XML.
Recent studies [26, 39] highlight that tree with label partitions (i.e.,
Parabel, Bonsai, and XT) outperforms tree with feature partition
(i.e., FastXML and PfastreXML).

Embedding-based Classifiers. Embedding-based classifiers
pro-ject the high dimensional label space into a lower dimensional
space. The underlying idea for this category of approaches is that
the high dimensional label space can be compressed to a lower
dimensional space where similar labels have representations close
to one another in the lower dimensional space. In the training pro-
cess, a compressed label space is used. Then, during the prediction
process, the decompressed label space is used. Thus, the label com-
pression and decompression process are key to these classifiers.
SLEEC [5] and AnnexML [46] are two proposed embedding-based
classifiers for XML. SLEEC learns an ensemble of local distance pre-
serving embeddings that preserve the pairwise distances between
the nearest label vectors. AnnexML is an extension of SLEEC. It gen-
erates a K-Nearest Neighbor graph of label vectors in its embedding.
The major drawback of embedding-based classifiers is the loss of
information during the compression of the label space. This loss of
information results in higher prediction error for embedding-based
classifiers compared to other types of classifiers [26].

Deep learning-based Classifiers. Related to the embedding-
based classifiers, deep learning has been utilized to learn a better
representation of raw text for creating XML classifiers. Several deep
learning-based classifiers for XML have been proposed [9, 23, 29, 57].
XML-CNN [29] is one of the first deep learning approaches pro-
posed for XML problems. By using a CNN (convolutional neural
network) with a hidden bottleneck layer to project the text feature
into low dimensional space, XML-CNN can work for tasks with a
large number of labels. AttentionXML [57] uses an RNN (recurrent
neural network) with the attention mechanism to learn embeddings
from the text inputs. Using these embeddings, AttentionXML trains
a probabilistic label tree (PLT) to handle the big number of labels.
Transformer-X [9] is the first deep learning XML approach to utilize
transformer models, e.g. BERT [14]. Transformer-X decomposes the
XML problem into a set of smaller sub-problems using label cluster-
ing. Then, the transformer model is fine-tuned to each sub-problem,
creating several models in the process. However, Transformer-X
still requires extensive computational resources while providing
marginal improvements over AttentionXML.

More recently, to address the computational constraints of deep
learning models, LightXML [23] has been proposed as a lightweight
deep learning model that is trained end-to-end and has a reduced
model size and training time relative to other deep learning models.
LightXML fine-tunes the transformer models with dynamic nega-
tive label sampling. For its text representation, LightXML extracts
embeddings from multiple layers of the transformer model. In other
XML tasks, LightXML has been demonstrated to outperform other
deep learning and tree-based XML classifiers.
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For our study, we experiment on XML techniques that have
achieved better performance in other tasks compared to FastXML,
which is used in the prior work of Chen et al. [11]. From the one-
vs-all classifiers, we choose DiSMEC. From the tree-based classi-
fiers, we choose Parabel, Bonsai, and ExtremeText. From the deep
learning-based classifiers, we choose XML-CNN and LightXML.
These XML techniques have good performance that was evaluated
and highlighted by prior works [3, 23, 26, 29, 39, 52]. The descrip-
tions of these techniques as well as their parameters used in our
experiments are provided in Section 3.4.

2.2 Existing Approaches for Library
Identification from Vulnerability Report

Chen et al. [11] proposed two approaches to automatically identify
affected libraries from vulnerability reports. In their study, they
explored the CPE matcher and FastXML.

(1) CPE matcher. As a simple baseline that does not use ma-
chine learning, the CPE matcher is an approach that uses
the library names listed in a vulnerability report’s CPE con-
figuration. After the library names are retrieved from the
CPE configurations, they are output as the predicted affected
libraries from the vulnerability report.

Overall, as the CPEs do not identify all relevant libraries, the
CPE matcher achieves an average F1 of only 0.24 [11].

(2) FastXML. Chen et al. [11] proposed the use of FastXML.
Their experiments showed that FastXML achieves an average
F1-score of 0.51 at top-k predictions (k=1,2,3), outperforming
the CPE matcher. A detailed description of the FastXML
algorithm is provided in Section 3.4.

3 METHODOLOGY
3.1 Dataset

We use the same dataset as prior work [11], comprising 7,696 vul-
nerability reports with 4,682 labels (i.e., libraries) collected from
the NVD (National Vulnerability Database) and the SCA (Software
Composition Analysis) vulnerability database. Each report consists
of a unique CVE ID, its vulnerability description, a list of web ref-
erences, its CPE (Common Platform Enumeration) configuration,
and its labels (i.e., the libraries that correspond to the given vulner-
ability report, manually curated by a team of security researchers).
The information related to the vulnerability is collected from NVD
entries between 2002 to 2019. For each vulnerability report, the
SCA vulnerability database is used to determine the affected library
names based on the vulnerability’s CVE ID. Within the dataset,
we find that each vulnerability is related to 1 — 432 libraries. The
ground truth labels of this dataset are vetted by security experts
from Veracode SCA.

3.2 Data Preparation

Before training the models, we preprocess the data in several steps.

1. Data Cleaning. We check the vulnerability reports in the
dataset to ensure that their information is correct and up-to-date.
For this purpose, we utilize the API provided by NVD! and compare
the information retrieved from the API with the dataset. From the

!https://nvd.nist.gov/vuln/data-feeds
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Figure 3: Distribution of the number of labels that the entries
are related to

7,696 vulnerability reports that we checked, we find that 30 of them
are no longer in use (e.g., no longer deemed a vulnerability, rejected
by NVD, etc.). After removing these entries, our dataset has 7,666
vulnerability reports.

2. Label Merging. Next, we check the labels of the remaining
7,666 vulnerability reports and find that there are labels that always
co-occur, which is a known problem in XML tasks [32, 51]. We
find that the majority of co-occurrences are between labels that are
closely related, such as gnome-session and gnome-shell. Therefore,
we merge the labels that always co-occur into a single label. For
example, the labels gnome-session and gnome-shell are merged into
gnome-session;gnome-shell. We merged a total of 1,865 labels, reduc-
ing the number of labels from 4,682 to 2,817. Figure 3 shows the
distribution of the number of labels per vulnerability.

3. Feature Engineering. From each vulnerability report, we use
its vulnerability description, references, and CPE configurations
for training the models. We perform the same preprocessing steps
as prior work [11]. While all three components are textual, we
preprocess the components differently:

o Description: From the description text, we remove non-alphanumeric

characters and non-noun words. Non-alphanumeric char-
acters are removed using a regular expression. Meanwhile,
we remove the non-noun words using the part-of-speech
tagging provided by NLTK [6] library. Following Chen et
al. [11] work, we also remove words that appear in more than
30% of the vulnerability data (i.e., common words). To do so,
we use CountVectorizer from Scikit-Learn [36] to count the
occurrences of each word in the vulnerability data.
o References: We remove the non-alphanumeric characters
from references. As an example, consider the reference link
“http://secunia.com/advisories/59328” from CVE-2014-1533.
We replace non-alphanumeric characters with whitespace,
resulting in the following string: http secunia com
advisories 59328.
CPE configurations: For each CPE configuration, we use a
regular expression based on the CPE format [7] to retrieve
the library names in the CPE. Consider the following CPE
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configuration for CVE-2014-1533: cpe:2.3:a:mozilla:
firefox:*:*:%:%:%:% Using the regular expression, we
retrieve the library name mozilla firefox.

After preprocessing, we concatenate the text into a single docu-
ment. Then, the features for the XML models are extracted.

4. Train and Test Data Preparation. For a fair comparison
between the models, we use the same training and testing dataset.
Similar to Chen et al. [11], we use a 75%-25% split, where 75% of
the dataset forms the training dataset while the remaining 25%
forms the test dataset. This evaluation strategy is the standard
approach in the literature of XML [3, 23, 26, 29, 39, 40, 52]. As each
instance in the dataset may have multiple labels, we use iterative
stratification [42, 45] to split the dataset, which is recommended
for experiments on multi-label datasets [10, 43]. We use scikit-
multilearn’s implementation? to split the dataset. This results in
a split where the training dataset has 6,017 entries and the test
dataset has 1,649 entries.

3.3 Experimental Setup

Through our experiments, we aim to evaluate the performance (to
answer RQ1) and efficiency (to answer RQ2) of the XML models. In
this section, we describe the device configuration and the evaluation
metrics used to assess the performance and efficiency of the model.

Device Configuration. All the model training and prediction
processes are done in a Docker environment running Ubuntu 18.04
with Intel(R) i7-10700K @ 3.8GHz, 64GB RAM, and 2 RTX 3070 GPU.
For the XML techniques which require deep learning (XML-CNN
and LightXML), we utilize the GPU for training. For the techniques
that do not require deep learning (FastXML, DiSEMC, Parabel, Bon-
sai, ExtremeText), we utilize all available CPU cores (8 cores).

Performance Metric. Following previous work [11], we eval-
uate the performance of a model through precision (P), recall (R),
and F1-score (F1) calculated for the top k (k=1,2,3) prediction re-
sults. In total, we have nine performance metrics: P@1, R@1, F1@1,
P@2, R@2, F1@2, P@3, R@3, and F1@3. These metrics are stan-
dard metrics used for the evaluation of XML tasks in prior stud-
ies [23, 26, 39, 40, 52]. To produce predictions, each XML model
computes a score for the possible labels for a given NVD entry. The
labels are ranked based on the score, from which we obtain the
top-k prediction. Given the top-k prediction pred_k(vul) and the
actual labels label(vul) for a given vulnerability report, precision@k
and recall@k are defined as follow:

pred_k(vul) N label(vul)

precision@k (vul) = .
_ pred_k(vul) N label(vul)
recall@k(vul) = label (oul)|

Then, we compute the average of the precision and recall calcu-
lated above to obtain the precision@k and recall@k that we use to
compare the performance between the XML techniques (n refers to
the number of data):

1 n
precision@k = — Z precision@k (vul)
n

ovul=1

2http:/ /scikit.ml/api/skmultilearn.model_selection.iterative_stratification.html
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Table 1: FastXML training parameters

Parameter Value
Number of trees 64

Parallel jobs No. of CPUs
Max. leaf size 10

Max. labels per leaf 20

Re-split count 0
Subsampling data size | 1 (no subsampling)
Sparse multiple 25
Random number seed 2016
Feature TF-IDF

Table 2: DiSMEC training parameters

Parameter Value
L2-regularized

Solver type . .

L2-loss support vector classification

Bias 1

Cost 1

Learning batch 1000

Feature bag-of-words

n

1
recall@k = — Z recall@k (vul)
n
oul=1
Finally, we calculate the F1-score@k by using the harmonic mean
of precision@k and recall@k.

precision@k X recall@k
precision@k + recall@k

F1@k =2x

Efficiency Metric. To evaluate the efficiency of the models, we
measure their execution time during training and prediction. The
training time is measured from the start of the training process
until the trained model is saved to a file. For prediction time, we
measure the time required to produce predictions for the entire
test dataset containing 1,649 vulnerability reports. From the time to
produce predictions for the entire dataset, we compute the average
time required by the model to produce predictions of the affected
libraries for one vulnerability report.

3.4 Model Implementation

Using the dataset that has been split into train and test data as
specified in Section 3.2, we perform experiments using seven dif-
ferent XML models. For the three tree-based models (i.e., FastXML,
Parabel, and Bonsai), the performance of the model may fluctuate
slightly due to the randomness in the clustering. To mitigate the
effect of randomness, we run the experiment ten times for each tree-
based model and report the average of the performance metrics. For
the one-vs-all and deep-learning based models, we construct one
model each as the performances of these models do not fluctuate.
For all models, we select parameters based on the parameters re-
ported in previous works. If more than one set of parameters were
reported, we pick the parameters used for experiments on datasets
that are most similar to our dataset by comparing the total number
of entries and labels. For each model, the set of features used in
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Table 3: Parabel and Bonsai model training parameters

Parameter Parabel Bonsai
Clustering function | Balanced 2-means | K-means
Cluster size 3 100
Num trees 3 3
Loss function hinge hinge
Maximum depth 20 20
Feature TF-IDF TF-IDF

Table 4: ExtremeText model training parameters

Parameter Value
Learning-rate 1.0
L2 regularization | 0.001
Tree arity 2
Word vector size 100
Feature TF-IDF

the model training are based on the feature extraction approaches
listed in each model’s corresponding paper.

FastXML. FastXML is a tree-based XML classifier, using trees to
represent hierarchies over the feature space. An ensemble of trees
are trained, and to build a tree, FastXML recursively partitions the
parent node by optimizing the normalized Discounted Cumulative
Gain (nDCG) as its ranking loss function. To perform prediction,
FastXML returns the ranked list of the most frequently occurring
labels in all the leaf nodes of the built trees ensemble. As the model
used for baseline comparison, we replicate the FastXML model used
by Chen et al. [11]. We use the model parameters that are listed in
their paper, which can be seen in Table 1.

DiSMEC. DiSMEC (Distributed Sparse Machines for Extreme
Multi-label Classification) [3] is a one-vs-all XML classifier that
uses a distributed learning mechanism for scalable one-vs-all model
training. DISMEC employs a binary one-vs-rest framework to learn
the weight vector for each label. As the number of labels grows,
more weight vectors has to be learned.

For better performance, DiSMEC takes a distributed approach,
where labels are sent to training nodes in batches of 1,000. Within
each node, a batch is trained in parallel [8]. Using this approach,
DiSMEC achieves comparable training and prediction time with
tree-based XML classifiers (e.g. FastXML). In our experiments on
DiSMEC, we use the parameters listed in Table 2. These parameters
were used for all experiments in the study proposing DiSMEC [3].

Parabel. Parabel [39] combines a tree-based approach and a
one-vs-all approach. One-vs-all approaches tend to have higher pre-
diction accuracies compared to tree-based classifiers. On the other
hand, one-vs-all approaches have significantly higher training and
prediction cost compared to tree-based approaches. Parabel aims to
have a comparable training speed with tree-based approaches while
maintaining a similar accuracy to the one-vs-all XML approach.

Parabel learns up to three label trees by recursively partitioning
the labels into two balanced groups using balanced 2-means cluster-
ing. Each leaf node in a label tree is associated with a set of linear
one-vs-all classifiers, one for each label contained in the leaf. Each
non-leaf node within the tree is associated with binary classifiers
that decide whether the currently processed data should be passed
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Table 5: XML-CNN model training parameters

Parameter Value
Dynamic max pooling | [128, 128, 128]
Filter channel 128
Filter sizes [2,2, 2]
Hidden dimensions 1024
Learning rate 0.003
Stride [2,1,1]
Feature TF-IDF

down to the left, right, or both child nodes. A data may arrive
into multiple leaf nodes, where the one-vs-all classifiers predict the
corresponding labels. In our experiments, we use the parameters
shown in the second column of Table 3. These parameters were
used for all experiments in the study proposing Parabel [39].

Bonsai. Bonsai [26] works similarly to Parabel, learning label
trees by partitioning the labels and having one-vs-all classifiers in
its leaf node. Different from Parabel’s deep and balanced tree, Bonsai
creates a diverse and shallow tree. This is done by setting the K
value of its K-means clustering to >2 (default to K=100 in the Bonsai
implementation) and dropping the balanced trees constraint. The
intuition behind the use of a shallow tree is to minimize the error
propagation due to the tree cascading effect. In our experiments
on Bonsai, we use the parameters shown in the third column of
Table 3. These parameters were also used in all experiments in the
study proposing Bonsai [26].

ExtremeText. ExtremeText (XT) [52] is a tree-based model that
is built on top of FastText [24], a text classification approach using
hierarchical softmax (HSM). XT extends FastText for XML problems
by utilizing probabilistic label trees (PLT) [22], which generalizes
HSM for multi-label classification. In building the PLT, XT uses
hierarchical clustering with recursive balanced k-means until the
size of the clusters are smaller than a given value (e.g., 100). This
clustering approach allows for similar labels to be located close to
one another within the tree. Each node in the tree is associated
with a logistic regression classifier. In our experiments, we use
the training parameters shown in Table 4, which are based on the
parameters used for the experiments on the EURLex-4K [33] dataset
in the study proposing XT [52].

XML-CNN. XML-CNN [29] is a deep learning approach for
XML. XML-CNN extends the CNN (Convolutional Neural Network)
proposed by Kim et al. [27]. To adapt the CNN architecture for
XML tasks, XML-CNN makes some modifications in its architecture.
XML-CNN uses binary cross-entropy (BCE) loss function rather
than the sigmoid function, as they find that BCE loss is more suitable
for XML. XML-CNN adds a hidden bottleneck layer, which is a fully-
connected hidden layer between the pooling and output layer.

XML-CNN requires a validation dataset for training. Thus, to
train an XML-CNN model, we further split the training dataset
into 80% training data (4850 entries) and 20% validation data (1167
entries). The parameters that we use for the XML-CNN model are
listed in Table 5. These parameters were used in the experiments
in the study proposing XML-CNN [29].

LightXML. LightXML [23] is a recent deep learning-based XML
approach that takes a transformer-based approach. LightXML is a
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Table 6: LightXML training parameters

Parameter Value

Learning rate 0.00001

Epoch 30

Batch size 4

SWA warmup 10

SWA step 200

Feature Transformer generated vectors

deep learning model which fine-tunes a transformer model with
dynamic negative label sampling. LightXML model consists of four
components: label clustering, text representation, label recalling,
and label ranking. First, the labels are clustered such that each
label belongs to one label cluster. Balanced 2-means clustering is
used to recursively partition the label sets to create the clusters.
Then, to obtain the text representation, LightXML uses transformer
models which embed raw text into a high dimensional represen-
tation. For this purpose, three pre-trained transformer models are
used: BERT [14], XLNet [53], and RoBERTa [30]. To reduce the
computational complexity associated with the use of transformers,
only the base model of each transformer is used (12 layers and 768
hidden dimensions). This text representation is the input of the
label recalling and label ranking components.

For label recalling and label ranking, LightXML uses generative
cooperative networks with dynamic negative label sampling. Label
recalling acts as the generator that dynamically samples positive
and negative labels. The label ranking part acts as the discriminator,
which distinguish between positive and negative labels. Given a
raw text as an input, LightXML first takes it as input to construct
a representation. Using the text representation, the label recalling
scores all label clusters and returns possible labels. Finally, the
label ranking scores every label returned by the label recalling
component, obtaining the top-k labels. For our LightXML model
training, we use the parameters shown in Table 6. These parameters
are based on the parameters used in the experiments on the EURLex-
4k [33] dataset in the study proposing LightXML [23].

4 RESULTS

Based on the experiment setup that we describe in Section 3.3, we
conduct our experiments on the six different XML techniques. We
compare their results with the FastXML baseline [11]. The following
subsections provide details of the evaluation results on both the
performance (RQ1) and the efficiency (RQ2) of the XML techniques.

4.1 RQ1: Do deep learning-based models and
other recently proposed XML models
outperform FastXML?

The results of the performance evaluation for all XML techniques
are shown in Table 7. Based on the experiment results, we found that
all XML techniques other than DiSMEC and XML-CNN achieve
better results than FastXML on all the evaluation metrics. The
biggest performance improvement can be seen in the top-1 predic-
tion results, where ExtremeText, Parabel, Bonsai, and LightXML
achieve 5%, 8%, 8%, and 10% F1-score improvement respectively.
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For the top-2 prediction results, ExtremeText, Parabel, Bonsai, and
LightXML achieve 3%, 7%, 7%, 9% F1-score improvement respec-
tively. For the top-3 prediction results, ExtremeText, Parabel, Bonsai,
and LightXML achieve 3%, 6%, 6%, and 10% F1-score improvement
respectively. Among the tested XML techniques, LightXML achieves
the highest improvement from the FastXML baseline.

While LightXML outperforms other models in terms of effective-
ness, XML-CNN does not. Furthermore, the tree-based model, Bon-
sai, has comparable performance to LightXML. This indicates that
deep learning methods do not always outperform tree-based mod-
els. Future work should, therefore, still consider XML techniques
that use approaches other than deep learning-based techniques.

Comparing the performance of the XML models with the CPE
matcher described in Section 2.2, we observe that all XML models
achieve better performance. Even the worst performing XML model,
DiSMEC, with an average F1-score of 0.62, outperforms the CPE
matcher which achieves an average F1-score of only 0.24 based on
Chen et al’s [11] evaluation. This highlights that the use of machine
learning approaches significantly improves accuracy in predicting
affected libraries from vulnerability reports.

Apart from DiSMEC and XML-CNN, the other XML models out-
perform FastXML. Both the best-performing deep learning-based
approach and tree-based approach obtain improvements of 5%
- 10% over FastXML. The transformer-based LightXML has the
greatest F1-score improvement of 10%.

4.2 RQ2: How efficient are the different XML
techniques?

It is important that the trained XML models are efficient enough for
practical application. The results of the efficiency evaluation for the
XML techniques are shown in Table 8. All techniques, apart from
LightXML, have a shorter training time compared to the baseline
FastXML. In terms of prediction time, only one model, LightXML,
requires a longer time to produce its predictions than FastXML.
XML-CNN achieves 3x faster training time and 2x faster prediction
time than FastXML, while ExtremeText achieves 6x faster training
time and 11x faster prediction time. To train LightXML, over 15,378
seconds (4.27 hours) are required, which is higher than the 294
seconds required for training FastXML. Despite the decrease in effi-
ciency, LightXML can be trained in several hours and is, therefore,
still practical to be deployed for practical use. The LightXML model
can be retrained overnight whenever a change in data distribution
is observed (e.g. the model’s effectiveness begins to drop).

The biggest improvements over FastXML can be seen in Parabel
and Bonsai, which have similar training and prediction times. It
takes less than a second to train both Parabel and Bonsai. Specifi-
cally, Parabel takes 0.47 seconds while Bonsai takes 0.50 seconds.
These training times are equal to 627x and 589x faster training
time over FastXML respectively. For prediction, Parabel takes 0.63
seconds while Bonsai takes 0.64 seconds, 12x faster than FastXML.

We also compute the average time required to predict the li-
braries of one vulnerability report in the test data. All of the XML
models have an average prediction time of less than one second.
Parabel achieves the fastest prediction time of 0.38 milliseconds for
a vulnerability report. Meanwhile, LightXML requires the longest
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Table 7: Experiment result on the performance of various XML modeling techniques. The two models with the best performance
are highlighted in bold text. The average F1 is the arithmetic mean of F1@1, F1@2, and F1@3. Improve vs. FastXML column
shows the average F1-score improvement of the model compared to FastXML. The category column refers to the category of

the model based on Section 2.1.

Category Model P@1 | R@1 | F1@1 | P@2 | R@2 | F1@2 | P@3 | R@3 | F1@3 | Avg. F1 I';‘i’;‘;';/[‘is‘
One-vs-all DiSMEC 079 | 058 | 067 | 057 | 072 | 064 | 044 | 076 | 055 0.62 3%
Deep learning | XML-CNN | 0.80 | 059 | 0.68 | 058 | 075 | 0.65 | 0.44 | 0.79 | 0.56 0.63 -1%
Tree-based FastXML 081 | 059 | 0.69 | 059 | 074 | 0.65 | 045 | 0.79 | 057 0.64 0%
Tree-based ExtremeText | 0.84 | 0.63 | 072 | 059 | 0.77 | 067 | 045 | 0.82 | 058 0.66 3%
Tree-based Parabel 087 | 065 | 074 | 062 | 080 | 070 | 047 | 0.85 | 0.60 0.68 7%
Tree-based Bonsai 0.87 | 065 | 0.74 | 062 | 0.80 | 0.70 | 0.47 | 0.86 | 0.61 0.68 7%
Deep learning | LightXML | 0.88 | 0.66 | 0.75 | 0.64 | 0.82 | 0.72 | 0.49 | 0.87 | 0.63 0.70 10%
Table 8: Execution time for training and prediction 3500 3188

3000
Model Train (s) | Prediction (s) | Avg. Pred. (ms) "
Parabel 0.47 0.63 0.38 © 2500 2109
Bonsai 0.50 0.64 0.39 2 5000
DiSMEC 24.28 2.55 0.58 o 1500 1494
ExtremeText 43.64 0.67 1.55 @
XML-CNN 90.34 3.24 1.96 Z 1000 708
FastXML 294.75 8.01 4.86 500
LightXML 15,378.65 103.72 62.90

0 <4 >5

prediction time of 62.90 milliseconds for a vulnerability report, 13x
more than the prediction time of FastXML model. All considered
XML models, including LightXML, are practical as they produce
predictions for a single vulnerability report in a fraction of a second.

Overall, the considered XML models are all practical for use in
terms of efficiency. Apart from LightXML, all models have better
efficiency than FastXML in both training and prediction time.
LightXML underperforms all other models, requiring training
time that is two orders of magnitude greater than FastXML. In
turn, FastXML is an order of magnitude less efficient than the
other five models. Other than LightXML, the models require just
a fraction of a second for the average prediction time of one
vulnerability report.

5 DISCUSSION
5.1 Lessons Learned

Transformer-based deep learning model achieves the best
performance but is less efficient. Based on the experimental
results described in Section 4, we find that among the tested XML
techniques, LightXML is the best-performing model. Our results
are consistent with other studies in text classification in multiple
tasks, in which transformer-based models outperform other mod-
els [1, 35, 49, 54]. However, the improvements in the effectiveness
are not without a cost. Transformer-based models require more
computational resources and take more time for both training and
prediction. This limitation can be seen in the training and predic-
tion time of LightXML that is shown in the last row of Table 8.

Label occurences

m Before merging ™ After merging

Figure 4: The number of occurrences of labels in the dataset.

LightXML takes 15,378.65 seconds (4 hours 16 minutes, and 18.65
seconds) for training and 103.72 seconds (1 minute 43.72 seconds)
for making 1,649 predictions. This is greater than the training and
prediction times of other XML models. For example, Bonsai takes
less than one second for both training and prediction.

Knowing this characteristic of the transformer-based model, sev-
eral considerations can be made when choosing an XML model.
If short training and prediction time is important, then it may be
better to use a tree-based model, such as Bonsai, which achieves
only slightly worse performance than LightXML but has higher
efficiency. Meanwhile, if time and computational resources are not
a problem, the transformer-based model achieves the best perfor-
mance. In the future, another possible approach is to reduce the
required resource and time of the transformer model. LightXML
utilize three transformer models, namely BERT [14], RoBERTa [30],
and XLNet [53]. It is possible to either reduce the number of trans-
former models used (e.g., only using one transformer model ) or to
use recently proposed lightweight transformer models [16, 31, 44].

Ease of predicting the tail labels. Prior studies [26, 48] raised
the problem that improvements in the effectiveness of better XML
models may come only from the better prediction of the labels
with a large number of training data (the head labels), while still
performing poorly on the labels with a small number of training
data (the tail labels). This is undesirable in a practical setting with
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Figure 5: Top-1 prediction differences and intersections be-
tween FastXML and LightXML model.

real-world implications, such as our task. Therefore, it is important
to understand the data associated with the tail labels.

In our analysis of the dataset, we find that a total of 3,188 labels
(68.1%) have less than 4 entries in the dataset, i.e., tail labels. As
such, it may be challenging for machine learning algorithms to train
good models that accurately predict many labels due to the low
amount of training data for the tail labels. The distribution of the
label occurrence of the dataset can be seen in Figure 4. Moreover,
considering the large proportion of labels with limited examples
(78.1% labels have four or less examples), prior studies [11, 29] have
suggested that deep learning-based approaches may not be suitable
due to data scarcity and the lack of training data for the tail labels.
However, our experiments have been surprising; the results of our
experiments show that recent models, including the deep learning-
based LightXML, achieve high effectiveness. This suggests that the
problem of tail labels did not hinder the XML models in our task of
identifying relevant libraries.

To understand this phenomenon, we analyze a subset of data
where the labels occur four or less times, i.e., the tail labels, in the
dataset. We find that vulnerabilities associated with libraries that
appear four or less times in the dataset are more likely to have a
vulnerability description that explicitly mentions at least one of
the affected library names, which can be learned as highly discrim-
inative features by the XML models. Out of 2,642 vulnerabilities,
2,191 (83%) of them contain an explicit mention of the library in the
vulnerability report. This is a higher proportion than the libraries
that appear more than four times; out of 5,024 vulnerabilities, 3,726
(74%) of them contain an explicit mention of the library. Using a Chi-
Square test to compare the distributions, we obtain a Chi-Square
statistic of over 75.5 and p-value less than 0.05, indicating that the
distributions of library mentions of frequently appearing libraries
differ from that of libraries uncommonly seen in the dataset. In
other words, library names are more likely to appear in the text of
vulnerability reports describing uncommon libraries.

Still, if a machine learning approach, which typically requires
many examples for training [15, 41], does not encounter a label
in the training dataset, it cannot correctly predict the label when
the model is deployed. As such, an XML model is limited by its
inability to correctly predict a previously unseen library affected
by a vulnerability. This is a challenge for future work.

On how LightXML achieves better prediction accuracy. We
conduct a deeper analysis on the prediction results of the XML mod-
els to get a better understanding of the more accurate predictions
provided by the recent XML models. In particular, we compare the

ICPC 2022, May 21-22, 2022, Pittsburgh, PA, USA

predictions of the baseline FastXML model against the best perform-
ing LightXML model. Figure 5 shows a Venn diagram comparing
the top-1 predictions of both models. There are 164 vulnerability re-
ports where LightXML provides a correct prediction while FastXML
does not. Meanwhile, there are 41 reports where FastXML provides
a correct prediction while LightXML does not. We further analyze
these cases to better understand the XML models.

First, we analyze the 164 vulnerability reports where the affected
libraries are correctly predicted only by LightXML. We find that
FastXML produces frequently occurring labels for the 164 vulnera-
bility reports. FastXML incorrectly predicts 49 (30%) of them with
ImageMagick library, 15 (9%) of them with firefox library, and 15
(9%) of them with kernel-rt library. These libraries are some of
the most frequently-occurring libraries within our dataset, with
ImageMagick, firefox, and kernel-rt occurring in 5.2% (most
common label), 5.1% (second most common label), and 3.8% (fourth
most common label) of the CVE entries respectively. This may
indicate that FastXML defaulted to predicting the most frequent
libraries on these vulnerability reports, which suggests that it did
not manage to extract discriminating features from them.

Then, we analyze the 41 entries that are correctly predicted by
FastXML but not by LightXML. We observe that most of the failures
are caused by LightXML predicting other labels that are related to
the actual affected library. Consider CVE-2014-6468 and CVE-2015-
0437. Both vulnerabilities affect java-1.8.0-openjdk. However,
LightXML predicts java-1.6.0-ibm, which is a different version
of java, instead. These cases account for 16 of the 41 (39%) failures.
We further analyze the 194 vulnerability reports where LightXML
is unable to provide a correct top-1 prediction. We find a similar
finding, where 93 out of the 194 (48%) incorrect top-1 predictions are
due to LightXML predicting related labels (of the wrong version).

5.2 Future Directions

While using more sophisticated XML techniques have led to im-
provements, there are still vulnerability reports with affected li-
braries that were not correctly predicted by the techniques. We
outline challenges and directions for future work:

Similar features with different labels. The features used for
classification are extracted from the description, reference URLs,
and CPE configuration of the vulnerability reports. We find that
there are vulnerability reports with similar features but have differ-
ent labels. An example is the vulnerability report of CVE-2014-1568.
This vulnerability affects three libraries, namely nss, nss-softokn,
and nss-util. However, LightXML and Bonsai identify firefox, thun-
derbird, and nss as the 3 most related labels. Upon investigation, we
observe that the features of the report are similar to other reports
of vulnerabilities affecting firefox and thunderbird. To check this
hypothesis, we extract the term frequency - inverse document fre-
quency (TF-IDF) vectors from our dataset using Scikit-Learn [36]
library.3 Then, we compare the similarity of CVE-2014-1568s vec-
tors with other vulnerability reports’ vectors. We compute the
cosine similarity of two vectors and rank the reports by their simi-
larity. We find that the features that are most similar to this report
are taken from CVE-2014-1574 and CVE-2014-1590 with 0.70 cosine

Shttps://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.T
fidf Vectorizer.html
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Figure 6: Extracted feature for CVE-2014-2858

similarity. Both vulnerabilities affect firefox and thunderbird. Since
the vulnerability reports have similar features, the XML models are
unable to distinguish between their labels.

One solution to mitigate this problem is to incorporate other
sources of data to extract features from. The above example suggests
that the vulnerability report alone may not be informative enough
to distinguish between vulnerability reports of different libraries,
pointing at the need of other data beyond the vulnerability report.

Lack of quality features. We find that some reports have more
details (e.g., reference URLs) and more verbose descriptions than
others. When the vulnerability reports lack informative features,
the XML model is unable to identify the correct library. An example
is CVE-2014-2858. The features extracted from the vulnerability
report are shown in Figure 6. The extracted features do not provide
enough information to correctly infer the affected libraries.

Similar to the problem of similar features with different labels
(described in the prior point), we suggest considering other types of
features extracted from other sources of data. A possible new source
of information is to collect data from the webpages referenced by
the reference URLs rather than processing the URLs as text.

Libraries that rarely appear in the training data. Data spar-
sity hinders the effectiveness of machine learning techniques. In
machine learning, having more training data often improves accu-
racy and generalizability [4, 20]. To alleviate this problem, future
work can explore techniques from the ML field that target the lack
of data, such as the use of data augmentation [13, 50, 58] to create
artificial data from existing data.

In predicting relevant libraries from vulnerability reports, one
potential challenge is that the models will encounter vulnerabilities
affecting libraries that were not previously seen in the training data.
One possible direction is to build on our finding that vulnerability
reports may include explicit mention of uncommon library names.
This challenge is related to the problem of “Out-of-Vocabulary”
words [25]. A solution is to use techniques from the Natural Lan-
guage Processing (NLP) domain, such as the Copy mechanism [18]
from recent Deep Learning models, which learns to repeat impor-
tant terms from the input text (in our case, the vulnerability report)
even when the term has not been seen before.

5.3 Threats to Validity

Threats to internal validity. Threats to internal validity relate
to the possibility of errors in our implementation. To mitigate this
risk, we have provided the detailed training parameters of the
XML models in our experiments. We also made our code publicly
available in the following link: https://github.com/soarsmu/ICPC_2
022_Automated-Identification-of-Libraries-from-Vulnerability-
Data-Can-We-Do-Better Using the parameters and the code, other
researchers can replicate our work and confirm our findings.
Threats to construct validity. Threats to construct validity
relate to the suitability of our evaluation metrics. For performance
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evaluation, the metrics that we use are precision, recall, and F1-
score from the top-k prediction (k=1,2,3). These metrics are the
same as used in prior work [11]. For the efficiency evaluation, we
use the same metrics, the training and prediction time of the XML
models, as prior works on XML [23, 29, 39]. As such, we believe
that this threat is minimal.

Threats to external validity. Threats to external validity relate
to the generalizability of our findings. We utilize the dataset by the
prior study of Chen et al. [11], which contains 7,696 vulnerability
reports and their labels. These vulnerability reports were curated
and verified by security researchers in Veracode. Moreover, the
reports are collected from NVD entries over a long time period
between 2002 to 2019. Thus, we believe that this threat is minimal.

6 CONCLUSION AND FUTURE WORK

An essential part of software composition analysis (SCA) is the iden-
tification of the relevant libraries from a vulnerability report, which
may not explicitly indicate them. A previous study has framed the
problem as an extreme multi-label classification problem. We assess
the effectiveness and efficiency of six XML techniques which are
chosen due to their strong performance in prior works. We report
surprising findings and highlight open problems, paving the road
for future work. Our work is important for both researchers and
practitioners as it analyzes the effectiveness of the XML techniques,
which can assist in software maintenance and managing the secu-
rity lifecycle. Our work also contributes to the research on library
vulnerability reports.

We find that all models, including deep learning-based models,
were effective. Specifically, we find that the Bonsai tree-based model
and the LightXML transformer-based model achieve 7% and 10%
average F1-score improvements over the baseline FastXML model
respectively. We find that all XML models are highly practical, as
each vulnerability report can be predicted in less than 100 mil-
liseconds. Apart from the transformer-based LightXML, all models
improve over FastXML in training and prediction time, with Bonsai
and Parabel achieving the biggest improvement of 627x and 589x
for training time, and 12x faster prediction time.

We analyze the performance of the models and discuss challenges

and future directions regarding the use of XML on this task. We
highlight our findings related to identifying related libraries from
vulnerability reports, which should be considered by future research.
Specifically, we highlight the tradeoff between performance and
efficiency of XML models, the need of other sources of information
beyond NVD, and the problem of identifying specific versions of
libraries.
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